| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnflduss.1 | ⊢ 𝑈  =  ( UnifSt ‘ ℂfld ) | 
						
							| 2 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 3 | 2 | ne0ii | ⊢ ℂ  ≠  ∅ | 
						
							| 4 |  | cnxmet | ⊢ ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) | 
						
							| 5 |  | xmetpsmet | ⊢ ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  →  ( abs  ∘   −  )  ∈  ( PsMet ‘ ℂ ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( abs  ∘   −  )  ∈  ( PsMet ‘ ℂ ) | 
						
							| 7 |  | metuust | ⊢ ( ( ℂ  ≠  ∅  ∧  ( abs  ∘   −  )  ∈  ( PsMet ‘ ℂ ) )  →  ( metUnif ‘ ( abs  ∘   −  ) )  ∈  ( UnifOn ‘ ℂ ) ) | 
						
							| 8 | 3 6 7 | mp2an | ⊢ ( metUnif ‘ ( abs  ∘   −  ) )  ∈  ( UnifOn ‘ ℂ ) | 
						
							| 9 |  | ustuni | ⊢ ( ( metUnif ‘ ( abs  ∘   −  ) )  ∈  ( UnifOn ‘ ℂ )  →  ∪  ( metUnif ‘ ( abs  ∘   −  ) )  =  ( ℂ  ×  ℂ ) ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ∪  ( metUnif ‘ ( abs  ∘   −  ) )  =  ( ℂ  ×  ℂ ) | 
						
							| 11 | 10 | eqcomi | ⊢ ( ℂ  ×  ℂ )  =  ∪  ( metUnif ‘ ( abs  ∘   −  ) ) | 
						
							| 12 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 13 |  | cnfldunif | ⊢ ( metUnif ‘ ( abs  ∘   −  ) )  =  ( UnifSet ‘ ℂfld ) | 
						
							| 14 | 12 13 | ussid | ⊢ ( ( ℂ  ×  ℂ )  =  ∪  ( metUnif ‘ ( abs  ∘   −  ) )  →  ( metUnif ‘ ( abs  ∘   −  ) )  =  ( UnifSt ‘ ℂfld ) ) | 
						
							| 15 | 11 14 | ax-mp | ⊢ ( metUnif ‘ ( abs  ∘   −  ) )  =  ( UnifSt ‘ ℂfld ) | 
						
							| 16 | 1 15 | eqtr4i | ⊢ 𝑈  =  ( metUnif ‘ ( abs  ∘   −  ) ) |