Step |
Hyp |
Ref |
Expression |
1 |
|
cnflduss.1 |
⊢ 𝑈 = ( UnifSt ‘ ℂfld ) |
2 |
|
0cn |
⊢ 0 ∈ ℂ |
3 |
2
|
ne0ii |
⊢ ℂ ≠ ∅ |
4 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
5 |
|
xmetpsmet |
⊢ ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) → ( abs ∘ − ) ∈ ( PsMet ‘ ℂ ) ) |
6 |
4 5
|
ax-mp |
⊢ ( abs ∘ − ) ∈ ( PsMet ‘ ℂ ) |
7 |
|
metuust |
⊢ ( ( ℂ ≠ ∅ ∧ ( abs ∘ − ) ∈ ( PsMet ‘ ℂ ) ) → ( metUnif ‘ ( abs ∘ − ) ) ∈ ( UnifOn ‘ ℂ ) ) |
8 |
3 6 7
|
mp2an |
⊢ ( metUnif ‘ ( abs ∘ − ) ) ∈ ( UnifOn ‘ ℂ ) |
9 |
|
ustuni |
⊢ ( ( metUnif ‘ ( abs ∘ − ) ) ∈ ( UnifOn ‘ ℂ ) → ∪ ( metUnif ‘ ( abs ∘ − ) ) = ( ℂ × ℂ ) ) |
10 |
8 9
|
ax-mp |
⊢ ∪ ( metUnif ‘ ( abs ∘ − ) ) = ( ℂ × ℂ ) |
11 |
10
|
eqcomi |
⊢ ( ℂ × ℂ ) = ∪ ( metUnif ‘ ( abs ∘ − ) ) |
12 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
13 |
|
cnfldunif |
⊢ ( metUnif ‘ ( abs ∘ − ) ) = ( UnifSet ‘ ℂfld ) |
14 |
12 13
|
ussid |
⊢ ( ( ℂ × ℂ ) = ∪ ( metUnif ‘ ( abs ∘ − ) ) → ( metUnif ‘ ( abs ∘ − ) ) = ( UnifSt ‘ ℂfld ) ) |
15 |
11 14
|
ax-mp |
⊢ ( metUnif ‘ ( abs ∘ − ) ) = ( UnifSt ‘ ℂfld ) |
16 |
1 15
|
eqtr4i |
⊢ 𝑈 = ( metUnif ‘ ( abs ∘ − ) ) |