Step |
Hyp |
Ref |
Expression |
1 |
|
df-cn |
⊢ Cn = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 } ) |
2 |
1
|
a1i |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → Cn = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 } ) ) |
3 |
|
simprr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → 𝑘 = 𝐾 ) |
4 |
3
|
unieqd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ∪ 𝑘 = ∪ 𝐾 ) |
5 |
|
toponuni |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) |
6 |
5
|
ad2antlr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → 𝑌 = ∪ 𝐾 ) |
7 |
4 6
|
eqtr4d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ∪ 𝑘 = 𝑌 ) |
8 |
|
simprl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → 𝑗 = 𝐽 ) |
9 |
8
|
unieqd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ∪ 𝑗 = ∪ 𝐽 ) |
10 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → 𝑋 = ∪ 𝐽 ) |
12 |
9 11
|
eqtr4d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ∪ 𝑗 = 𝑋 ) |
13 |
7 12
|
oveq12d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( ∪ 𝑘 ↑m ∪ 𝑗 ) = ( 𝑌 ↑m 𝑋 ) ) |
14 |
8
|
eleq2d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 ↔ ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 ) ) |
15 |
3 14
|
raleqbidv |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( ∀ 𝑦 ∈ 𝑘 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 ↔ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 ) ) |
16 |
13 15
|
rabeqbidv |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 } = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ) |
17 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
18 |
17
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → 𝐽 ∈ Top ) |
19 |
|
topontop |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) |
20 |
19
|
adantl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → 𝐾 ∈ Top ) |
21 |
|
ovex |
⊢ ( 𝑌 ↑m 𝑋 ) ∈ V |
22 |
21
|
rabex |
⊢ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ∈ V |
23 |
22
|
a1i |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ∈ V ) |
24 |
2 16 18 20 23
|
ovmpod |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 Cn 𝐾 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ) |