| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnheibor.2 | ⊢ 𝐽  =  ( TopOpen ‘ ℂfld ) | 
						
							| 2 |  | cnheibor.3 | ⊢ 𝑇  =  ( 𝐽  ↾t  𝑋 ) | 
						
							| 3 |  | cnheibor.4 | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  ( 𝑥  +  ( i  ·  𝑦 ) ) ) | 
						
							| 4 |  | cnheibor.5 | ⊢ 𝑌  =  ( 𝐹  “  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) ) | 
						
							| 5 | 1 | cnfldtop | ⊢ 𝐽  ∈  Top | 
						
							| 6 | 3 | cnref1o | ⊢ 𝐹 : ( ℝ  ×  ℝ ) –1-1-onto→ ℂ | 
						
							| 7 |  | f1ofn | ⊢ ( 𝐹 : ( ℝ  ×  ℝ ) –1-1-onto→ ℂ  →  𝐹  Fn  ( ℝ  ×  ℝ ) ) | 
						
							| 8 |  | elpreima | ⊢ ( 𝐹  Fn  ( ℝ  ×  ℝ )  →  ( 𝑢  ∈  ( ◡ 𝐹  “  𝑋 )  ↔  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) ) ) | 
						
							| 9 | 6 7 8 | mp2b | ⊢ ( 𝑢  ∈  ( ◡ 𝐹  “  𝑋 )  ↔  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) ) | 
						
							| 10 |  | 1st2nd2 | ⊢ ( 𝑢  ∈  ( ℝ  ×  ℝ )  →  𝑢  =  〈 ( 1st  ‘ 𝑢 ) ,  ( 2nd  ‘ 𝑢 ) 〉 ) | 
						
							| 11 | 10 | ad2antrl | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  𝑢  =  〈 ( 1st  ‘ 𝑢 ) ,  ( 2nd  ‘ 𝑢 ) 〉 ) | 
						
							| 12 |  | xp1st | ⊢ ( 𝑢  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ 𝑢 )  ∈  ℝ ) | 
						
							| 13 | 12 | ad2antrl | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( 1st  ‘ 𝑢 )  ∈  ℝ ) | 
						
							| 14 | 13 | recnd | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( 1st  ‘ 𝑢 )  ∈  ℂ ) | 
						
							| 15 | 14 | abscld | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( abs ‘ ( 1st  ‘ 𝑢 ) )  ∈  ℝ ) | 
						
							| 16 | 1 | cnfldtopon | ⊢ 𝐽  ∈  ( TopOn ‘ ℂ ) | 
						
							| 17 | 16 | toponunii | ⊢ ℂ  =  ∪  𝐽 | 
						
							| 18 | 17 | cldss | ⊢ ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  →  𝑋  ⊆  ℂ ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  𝑋  ⊆  ℂ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  𝑋  ⊆  ℂ ) | 
						
							| 21 |  | simprr | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) | 
						
							| 22 | 20 21 | sseldd | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑢 )  ∈  ℂ ) | 
						
							| 23 | 22 | abscld | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑢 ) )  ∈  ℝ ) | 
						
							| 24 |  | simplrl | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  𝑅  ∈  ℝ ) | 
						
							| 25 |  | simprl | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  𝑢  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 26 |  | f1ocnvfv1 | ⊢ ( ( 𝐹 : ( ℝ  ×  ℝ ) –1-1-onto→ ℂ  ∧  𝑢  ∈  ( ℝ  ×  ℝ ) )  →  ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) )  =  𝑢 ) | 
						
							| 27 | 6 25 26 | sylancr | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) )  =  𝑢 ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑢 )  →  ( ℜ ‘ 𝑧 )  =  ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 29 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑢 )  →  ( ℑ ‘ 𝑧 )  =  ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 30 | 28 29 | opeq12d | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑢 )  →  〈 ( ℜ ‘ 𝑧 ) ,  ( ℑ ‘ 𝑧 ) 〉  =  〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 ) | 
						
							| 31 | 3 | cnrecnv | ⊢ ◡ 𝐹  =  ( 𝑧  ∈  ℂ  ↦  〈 ( ℜ ‘ 𝑧 ) ,  ( ℑ ‘ 𝑧 ) 〉 ) | 
						
							| 32 |  | opex | ⊢ 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉  ∈  V | 
						
							| 33 | 30 31 32 | fvmpt | ⊢ ( ( 𝐹 ‘ 𝑢 )  ∈  ℂ  →  ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) )  =  〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 ) | 
						
							| 34 | 22 33 | syl | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) )  =  〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 ) | 
						
							| 35 | 27 34 | eqtr3d | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  𝑢  =  〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( 1st  ‘ 𝑢 )  =  ( 1st  ‘ 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 ) ) | 
						
							| 37 |  | fvex | ⊢ ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) )  ∈  V | 
						
							| 38 |  | fvex | ⊢ ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) )  ∈  V | 
						
							| 39 | 37 38 | op1st | ⊢ ( 1st  ‘ 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 )  =  ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 40 | 36 39 | eqtrdi | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( 1st  ‘ 𝑢 )  =  ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 41 | 40 | fveq2d | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( abs ‘ ( 1st  ‘ 𝑢 ) )  =  ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ) ) | 
						
							| 42 |  | absrele | ⊢ ( ( 𝐹 ‘ 𝑢 )  ∈  ℂ  →  ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 43 | 22 42 | syl | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 44 | 41 43 | eqbrtrd | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( abs ‘ ( 1st  ‘ 𝑢 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 45 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑢 )  →  ( abs ‘ 𝑧 )  =  ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 46 | 45 | breq1d | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑢 )  →  ( ( abs ‘ 𝑧 )  ≤  𝑅  ↔  ( abs ‘ ( 𝐹 ‘ 𝑢 ) )  ≤  𝑅 ) ) | 
						
							| 47 |  | simplrr | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) | 
						
							| 48 | 46 47 21 | rspcdva | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑢 ) )  ≤  𝑅 ) | 
						
							| 49 | 15 23 24 44 48 | letrd | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( abs ‘ ( 1st  ‘ 𝑢 ) )  ≤  𝑅 ) | 
						
							| 50 | 13 24 | absled | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( ( abs ‘ ( 1st  ‘ 𝑢 ) )  ≤  𝑅  ↔  ( - 𝑅  ≤  ( 1st  ‘ 𝑢 )  ∧  ( 1st  ‘ 𝑢 )  ≤  𝑅 ) ) ) | 
						
							| 51 | 49 50 | mpbid | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( - 𝑅  ≤  ( 1st  ‘ 𝑢 )  ∧  ( 1st  ‘ 𝑢 )  ≤  𝑅 ) ) | 
						
							| 52 | 51 | simpld | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  - 𝑅  ≤  ( 1st  ‘ 𝑢 ) ) | 
						
							| 53 | 51 | simprd | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( 1st  ‘ 𝑢 )  ≤  𝑅 ) | 
						
							| 54 |  | renegcl | ⊢ ( 𝑅  ∈  ℝ  →  - 𝑅  ∈  ℝ ) | 
						
							| 55 | 24 54 | syl | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  - 𝑅  ∈  ℝ ) | 
						
							| 56 |  | elicc2 | ⊢ ( ( - 𝑅  ∈  ℝ  ∧  𝑅  ∈  ℝ )  →  ( ( 1st  ‘ 𝑢 )  ∈  ( - 𝑅 [,] 𝑅 )  ↔  ( ( 1st  ‘ 𝑢 )  ∈  ℝ  ∧  - 𝑅  ≤  ( 1st  ‘ 𝑢 )  ∧  ( 1st  ‘ 𝑢 )  ≤  𝑅 ) ) ) | 
						
							| 57 | 55 24 56 | syl2anc | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( ( 1st  ‘ 𝑢 )  ∈  ( - 𝑅 [,] 𝑅 )  ↔  ( ( 1st  ‘ 𝑢 )  ∈  ℝ  ∧  - 𝑅  ≤  ( 1st  ‘ 𝑢 )  ∧  ( 1st  ‘ 𝑢 )  ≤  𝑅 ) ) ) | 
						
							| 58 | 13 52 53 57 | mpbir3and | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( 1st  ‘ 𝑢 )  ∈  ( - 𝑅 [,] 𝑅 ) ) | 
						
							| 59 |  | xp2nd | ⊢ ( 𝑢  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ 𝑢 )  ∈  ℝ ) | 
						
							| 60 | 59 | ad2antrl | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( 2nd  ‘ 𝑢 )  ∈  ℝ ) | 
						
							| 61 | 60 | recnd | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( 2nd  ‘ 𝑢 )  ∈  ℂ ) | 
						
							| 62 | 61 | abscld | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( abs ‘ ( 2nd  ‘ 𝑢 ) )  ∈  ℝ ) | 
						
							| 63 | 35 | fveq2d | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( 2nd  ‘ 𝑢 )  =  ( 2nd  ‘ 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 ) ) | 
						
							| 64 | 37 38 | op2nd | ⊢ ( 2nd  ‘ 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ,  ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 )  =  ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 65 | 63 64 | eqtrdi | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( 2nd  ‘ 𝑢 )  =  ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 66 | 65 | fveq2d | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( abs ‘ ( 2nd  ‘ 𝑢 ) )  =  ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) ) ) | 
						
							| 67 |  | absimle | ⊢ ( ( 𝐹 ‘ 𝑢 )  ∈  ℂ  →  ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 68 | 22 67 | syl | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 69 | 66 68 | eqbrtrd | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( abs ‘ ( 2nd  ‘ 𝑢 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 70 | 62 23 24 69 48 | letrd | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( abs ‘ ( 2nd  ‘ 𝑢 ) )  ≤  𝑅 ) | 
						
							| 71 | 60 24 | absled | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( ( abs ‘ ( 2nd  ‘ 𝑢 ) )  ≤  𝑅  ↔  ( - 𝑅  ≤  ( 2nd  ‘ 𝑢 )  ∧  ( 2nd  ‘ 𝑢 )  ≤  𝑅 ) ) ) | 
						
							| 72 | 70 71 | mpbid | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( - 𝑅  ≤  ( 2nd  ‘ 𝑢 )  ∧  ( 2nd  ‘ 𝑢 )  ≤  𝑅 ) ) | 
						
							| 73 | 72 | simpld | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  - 𝑅  ≤  ( 2nd  ‘ 𝑢 ) ) | 
						
							| 74 | 72 | simprd | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( 2nd  ‘ 𝑢 )  ≤  𝑅 ) | 
						
							| 75 |  | elicc2 | ⊢ ( ( - 𝑅  ∈  ℝ  ∧  𝑅  ∈  ℝ )  →  ( ( 2nd  ‘ 𝑢 )  ∈  ( - 𝑅 [,] 𝑅 )  ↔  ( ( 2nd  ‘ 𝑢 )  ∈  ℝ  ∧  - 𝑅  ≤  ( 2nd  ‘ 𝑢 )  ∧  ( 2nd  ‘ 𝑢 )  ≤  𝑅 ) ) ) | 
						
							| 76 | 55 24 75 | syl2anc | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( ( 2nd  ‘ 𝑢 )  ∈  ( - 𝑅 [,] 𝑅 )  ↔  ( ( 2nd  ‘ 𝑢 )  ∈  ℝ  ∧  - 𝑅  ≤  ( 2nd  ‘ 𝑢 )  ∧  ( 2nd  ‘ 𝑢 )  ≤  𝑅 ) ) ) | 
						
							| 77 | 60 73 74 76 | mpbir3and | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  ( 2nd  ‘ 𝑢 )  ∈  ( - 𝑅 [,] 𝑅 ) ) | 
						
							| 78 | 58 77 | opelxpd | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  〈 ( 1st  ‘ 𝑢 ) ,  ( 2nd  ‘ 𝑢 ) 〉  ∈  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) ) | 
						
							| 79 | 11 78 | eqeltrd | ⊢ ( ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  ∧  ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) )  →  𝑢  ∈  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) ) | 
						
							| 80 | 79 | ex | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  ( ( 𝑢  ∈  ( ℝ  ×  ℝ )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 )  →  𝑢  ∈  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) ) ) | 
						
							| 81 | 9 80 | biimtrid | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  ( 𝑢  ∈  ( ◡ 𝐹  “  𝑋 )  →  𝑢  ∈  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) ) ) | 
						
							| 82 | 81 | ssrdv | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  ( ◡ 𝐹  “  𝑋 )  ⊆  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) ) | 
						
							| 83 |  | f1ofun | ⊢ ( 𝐹 : ( ℝ  ×  ℝ ) –1-1-onto→ ℂ  →  Fun  𝐹 ) | 
						
							| 84 | 6 83 | ax-mp | ⊢ Fun  𝐹 | 
						
							| 85 |  | f1ofo | ⊢ ( 𝐹 : ( ℝ  ×  ℝ ) –1-1-onto→ ℂ  →  𝐹 : ( ℝ  ×  ℝ ) –onto→ ℂ ) | 
						
							| 86 |  | forn | ⊢ ( 𝐹 : ( ℝ  ×  ℝ ) –onto→ ℂ  →  ran  𝐹  =  ℂ ) | 
						
							| 87 | 6 85 86 | mp2b | ⊢ ran  𝐹  =  ℂ | 
						
							| 88 | 19 87 | sseqtrrdi | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  𝑋  ⊆  ran  𝐹 ) | 
						
							| 89 |  | funimass1 | ⊢ ( ( Fun  𝐹  ∧  𝑋  ⊆  ran  𝐹 )  →  ( ( ◡ 𝐹  “  𝑋 )  ⊆  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) )  →  𝑋  ⊆  ( 𝐹  “  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) ) ) ) | 
						
							| 90 | 84 88 89 | sylancr | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  ( ( ◡ 𝐹  “  𝑋 )  ⊆  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) )  →  𝑋  ⊆  ( 𝐹  “  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) ) ) ) | 
						
							| 91 | 82 90 | mpd | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  𝑋  ⊆  ( 𝐹  “  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) ) ) | 
						
							| 92 | 91 4 | sseqtrrdi | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  𝑋  ⊆  𝑌 ) | 
						
							| 93 |  | eqid | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ran  (,) ) | 
						
							| 94 | 3 93 1 | cnrehmeo | ⊢ 𝐹  ∈  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) ) Homeo 𝐽 ) | 
						
							| 95 |  | imaexg | ⊢ ( 𝐹  ∈  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) ) Homeo 𝐽 )  →  ( 𝐹  “  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) )  ∈  V ) | 
						
							| 96 | 94 95 | ax-mp | ⊢ ( 𝐹  “  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) )  ∈  V | 
						
							| 97 | 4 96 | eqeltri | ⊢ 𝑌  ∈  V | 
						
							| 98 | 97 | a1i | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  𝑌  ∈  V ) | 
						
							| 99 |  | restabs | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  ⊆  𝑌  ∧  𝑌  ∈  V )  →  ( ( 𝐽  ↾t  𝑌 )  ↾t  𝑋 )  =  ( 𝐽  ↾t  𝑋 ) ) | 
						
							| 100 | 5 92 98 99 | mp3an2i | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  ( ( 𝐽  ↾t  𝑌 )  ↾t  𝑋 )  =  ( 𝐽  ↾t  𝑋 ) ) | 
						
							| 101 | 100 2 | eqtr4di | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  ( ( 𝐽  ↾t  𝑌 )  ↾t  𝑋 )  =  𝑇 ) | 
						
							| 102 | 4 | oveq2i | ⊢ ( 𝐽  ↾t  𝑌 )  =  ( 𝐽  ↾t  ( 𝐹  “  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) ) ) | 
						
							| 103 |  | ishmeo | ⊢ ( 𝐹  ∈  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) ) Homeo 𝐽 )  ↔  ( 𝐹  ∈  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) )  Cn  𝐽 )  ∧  ◡ 𝐹  ∈  ( 𝐽  Cn  ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) ) ) ) ) | 
						
							| 104 | 94 103 | mpbi | ⊢ ( 𝐹  ∈  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) )  Cn  𝐽 )  ∧  ◡ 𝐹  ∈  ( 𝐽  Cn  ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) ) ) ) | 
						
							| 105 | 104 | simpli | ⊢ 𝐹  ∈  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) )  Cn  𝐽 ) | 
						
							| 106 |  | iccssre | ⊢ ( ( - 𝑅  ∈  ℝ  ∧  𝑅  ∈  ℝ )  →  ( - 𝑅 [,] 𝑅 )  ⊆  ℝ ) | 
						
							| 107 | 54 106 | mpancom | ⊢ ( 𝑅  ∈  ℝ  →  ( - 𝑅 [,] 𝑅 )  ⊆  ℝ ) | 
						
							| 108 | 1 93 | rerest | ⊢ ( ( - 𝑅 [,] 𝑅 )  ⊆  ℝ  →  ( 𝐽  ↾t  ( - 𝑅 [,] 𝑅 ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( - 𝑅 [,] 𝑅 ) ) ) | 
						
							| 109 | 107 108 | syl | ⊢ ( 𝑅  ∈  ℝ  →  ( 𝐽  ↾t  ( - 𝑅 [,] 𝑅 ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( - 𝑅 [,] 𝑅 ) ) ) | 
						
							| 110 | 109 109 | oveq12d | ⊢ ( 𝑅  ∈  ℝ  →  ( ( 𝐽  ↾t  ( - 𝑅 [,] 𝑅 ) )  ×t  ( 𝐽  ↾t  ( - 𝑅 [,] 𝑅 ) ) )  =  ( ( ( topGen ‘ ran  (,) )  ↾t  ( - 𝑅 [,] 𝑅 ) )  ×t  ( ( topGen ‘ ran  (,) )  ↾t  ( - 𝑅 [,] 𝑅 ) ) ) ) | 
						
							| 111 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 112 |  | ovex | ⊢ ( - 𝑅 [,] 𝑅 )  ∈  V | 
						
							| 113 |  | txrest | ⊢ ( ( ( ( topGen ‘ ran  (,) )  ∈  Top  ∧  ( topGen ‘ ran  (,) )  ∈  Top )  ∧  ( ( - 𝑅 [,] 𝑅 )  ∈  V  ∧  ( - 𝑅 [,] 𝑅 )  ∈  V ) )  →  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) )  ↾t  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) )  =  ( ( ( topGen ‘ ran  (,) )  ↾t  ( - 𝑅 [,] 𝑅 ) )  ×t  ( ( topGen ‘ ran  (,) )  ↾t  ( - 𝑅 [,] 𝑅 ) ) ) ) | 
						
							| 114 | 111 111 112 112 113 | mp4an | ⊢ ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) )  ↾t  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) )  =  ( ( ( topGen ‘ ran  (,) )  ↾t  ( - 𝑅 [,] 𝑅 ) )  ×t  ( ( topGen ‘ ran  (,) )  ↾t  ( - 𝑅 [,] 𝑅 ) ) ) | 
						
							| 115 | 110 114 | eqtr4di | ⊢ ( 𝑅  ∈  ℝ  →  ( ( 𝐽  ↾t  ( - 𝑅 [,] 𝑅 ) )  ×t  ( 𝐽  ↾t  ( - 𝑅 [,] 𝑅 ) ) )  =  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) )  ↾t  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) ) ) | 
						
							| 116 |  | eqid | ⊢ ( ( topGen ‘ ran  (,) )  ↾t  ( - 𝑅 [,] 𝑅 ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( - 𝑅 [,] 𝑅 ) ) | 
						
							| 117 | 93 116 | icccmp | ⊢ ( ( - 𝑅  ∈  ℝ  ∧  𝑅  ∈  ℝ )  →  ( ( topGen ‘ ran  (,) )  ↾t  ( - 𝑅 [,] 𝑅 ) )  ∈  Comp ) | 
						
							| 118 | 54 117 | mpancom | ⊢ ( 𝑅  ∈  ℝ  →  ( ( topGen ‘ ran  (,) )  ↾t  ( - 𝑅 [,] 𝑅 ) )  ∈  Comp ) | 
						
							| 119 | 109 118 | eqeltrd | ⊢ ( 𝑅  ∈  ℝ  →  ( 𝐽  ↾t  ( - 𝑅 [,] 𝑅 ) )  ∈  Comp ) | 
						
							| 120 |  | txcmp | ⊢ ( ( ( 𝐽  ↾t  ( - 𝑅 [,] 𝑅 ) )  ∈  Comp  ∧  ( 𝐽  ↾t  ( - 𝑅 [,] 𝑅 ) )  ∈  Comp )  →  ( ( 𝐽  ↾t  ( - 𝑅 [,] 𝑅 ) )  ×t  ( 𝐽  ↾t  ( - 𝑅 [,] 𝑅 ) ) )  ∈  Comp ) | 
						
							| 121 | 119 119 120 | syl2anc | ⊢ ( 𝑅  ∈  ℝ  →  ( ( 𝐽  ↾t  ( - 𝑅 [,] 𝑅 ) )  ×t  ( 𝐽  ↾t  ( - 𝑅 [,] 𝑅 ) ) )  ∈  Comp ) | 
						
							| 122 | 115 121 | eqeltrrd | ⊢ ( 𝑅  ∈  ℝ  →  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) )  ↾t  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) )  ∈  Comp ) | 
						
							| 123 |  | imacmp | ⊢ ( ( 𝐹  ∈  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) )  Cn  𝐽 )  ∧  ( ( ( topGen ‘ ran  (,) )  ×t  ( topGen ‘ ran  (,) ) )  ↾t  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) )  ∈  Comp )  →  ( 𝐽  ↾t  ( 𝐹  “  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) ) )  ∈  Comp ) | 
						
							| 124 | 105 122 123 | sylancr | ⊢ ( 𝑅  ∈  ℝ  →  ( 𝐽  ↾t  ( 𝐹  “  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) ) )  ∈  Comp ) | 
						
							| 125 | 102 124 | eqeltrid | ⊢ ( 𝑅  ∈  ℝ  →  ( 𝐽  ↾t  𝑌 )  ∈  Comp ) | 
						
							| 126 | 125 | ad2antrl | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  ( 𝐽  ↾t  𝑌 )  ∈  Comp ) | 
						
							| 127 |  | imassrn | ⊢ ( 𝐹  “  ( ( - 𝑅 [,] 𝑅 )  ×  ( - 𝑅 [,] 𝑅 ) ) )  ⊆  ran  𝐹 | 
						
							| 128 | 4 127 | eqsstri | ⊢ 𝑌  ⊆  ran  𝐹 | 
						
							| 129 |  | f1of | ⊢ ( 𝐹 : ( ℝ  ×  ℝ ) –1-1-onto→ ℂ  →  𝐹 : ( ℝ  ×  ℝ ) ⟶ ℂ ) | 
						
							| 130 |  | frn | ⊢ ( 𝐹 : ( ℝ  ×  ℝ ) ⟶ ℂ  →  ran  𝐹  ⊆  ℂ ) | 
						
							| 131 | 6 129 130 | mp2b | ⊢ ran  𝐹  ⊆  ℂ | 
						
							| 132 | 128 131 | sstri | ⊢ 𝑌  ⊆  ℂ | 
						
							| 133 |  | simpl | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  𝑋  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 134 | 17 | restcldi | ⊢ ( ( 𝑌  ⊆  ℂ  ∧  𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑋  ⊆  𝑌 )  →  𝑋  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝑌 ) ) ) | 
						
							| 135 | 132 133 92 134 | mp3an2i | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  𝑋  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝑌 ) ) ) | 
						
							| 136 |  | cmpcld | ⊢ ( ( ( 𝐽  ↾t  𝑌 )  ∈  Comp  ∧  𝑋  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝑌 ) ) )  →  ( ( 𝐽  ↾t  𝑌 )  ↾t  𝑋 )  ∈  Comp ) | 
						
							| 137 | 126 135 136 | syl2anc | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  ( ( 𝐽  ↾t  𝑌 )  ↾t  𝑋 )  ∈  Comp ) | 
						
							| 138 | 101 137 | eqeltrrd | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑅  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( abs ‘ 𝑧 )  ≤  𝑅 ) )  →  𝑇  ∈  Comp ) |