Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
ral0 |
⊢ ∀ 𝑦 ∈ ∅ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 0 |
3 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐴 ∈ ℝ ) |
4 |
3
|
rexrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐴 ∈ ℝ* ) |
5 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐵 ∈ ℝ ) |
6 |
5
|
rexrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐵 ∈ ℝ* ) |
7 |
|
icc0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
8 |
4 6 7
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
9 |
8
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐵 < 𝐴 ) → ( 𝐴 [,] 𝐵 ) = ∅ ) |
10 |
9
|
raleqdv |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐵 < 𝐴 ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 0 ↔ ∀ 𝑦 ∈ ∅ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 0 ) ) |
11 |
2 10
|
mpbiri |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐵 < 𝐴 ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 0 ) |
12 |
|
brralrspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 0 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
13 |
1 11 12
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐵 < 𝐴 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
14 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) |
15 |
5
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
16 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
17 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
18 |
|
abscncf |
⊢ abs ∈ ( ℂ –cn→ ℝ ) |
19 |
18
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → abs ∈ ( ℂ –cn→ ℝ ) ) |
20 |
17 19
|
cncfco |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( abs ∘ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴 ≤ 𝐵 ) → ( abs ∘ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
22 |
14 15 16 21
|
evthicc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴 ≤ 𝐵 ) → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ) ) |
23 |
22
|
simpld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴 ≤ 𝐵 ) → ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) |
24 |
|
cncff |
⊢ ( ( abs ∘ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( abs ∘ 𝐹 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
25 |
20 24
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( abs ∘ 𝐹 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
26 |
25
|
ffvelrnda |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ∈ ℝ ) |
27 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
28 |
17 27
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
30 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
31 |
29 30
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
32 |
31
|
breq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ↔ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) ) |
33 |
32
|
ralbidva |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) ) |
34 |
33
|
biimpd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) ) |
35 |
|
brralrspcev |
⊢ ( ( ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
36 |
26 34 35
|
syl6an |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) |
37 |
36
|
rexlimdva |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) |
38 |
37
|
imp |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
39 |
23 38
|
syldan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ∧ 𝐴 ≤ 𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
40 |
13 39 5 3
|
ltlecasei |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |