| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnaddabloOLD |
⊢ + ∈ AbelOp |
| 2 |
|
ablogrpo |
⊢ ( + ∈ AbelOp → + ∈ GrpOp ) |
| 3 |
1 2
|
ax-mp |
⊢ + ∈ GrpOp |
| 4 |
|
ax-addf |
⊢ + : ( ℂ × ℂ ) ⟶ ℂ |
| 5 |
4
|
fdmi |
⊢ dom + = ( ℂ × ℂ ) |
| 6 |
3 5
|
grporn |
⊢ ℂ = ran + |
| 7 |
|
eqid |
⊢ ( GId ‘ + ) = ( GId ‘ + ) |
| 8 |
6 7
|
grpoidval |
⊢ ( + ∈ GrpOp → ( GId ‘ + ) = ( ℩ 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ) ) |
| 9 |
3 8
|
ax-mp |
⊢ ( GId ‘ + ) = ( ℩ 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ) |
| 10 |
|
addlid |
⊢ ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 ) |
| 11 |
10
|
rgen |
⊢ ∀ 𝑥 ∈ ℂ ( 0 + 𝑥 ) = 𝑥 |
| 12 |
|
0cn |
⊢ 0 ∈ ℂ |
| 13 |
6
|
grpoideu |
⊢ ( + ∈ GrpOp → ∃! 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ) |
| 14 |
3 13
|
ax-mp |
⊢ ∃! 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 |
| 15 |
|
oveq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 + 𝑥 ) = ( 0 + 𝑥 ) ) |
| 16 |
15
|
eqeq1d |
⊢ ( 𝑦 = 0 → ( ( 𝑦 + 𝑥 ) = 𝑥 ↔ ( 0 + 𝑥 ) = 𝑥 ) ) |
| 17 |
16
|
ralbidv |
⊢ ( 𝑦 = 0 → ( ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ↔ ∀ 𝑥 ∈ ℂ ( 0 + 𝑥 ) = 𝑥 ) ) |
| 18 |
17
|
riota2 |
⊢ ( ( 0 ∈ ℂ ∧ ∃! 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ) → ( ∀ 𝑥 ∈ ℂ ( 0 + 𝑥 ) = 𝑥 ↔ ( ℩ 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ) = 0 ) ) |
| 19 |
12 14 18
|
mp2an |
⊢ ( ∀ 𝑥 ∈ ℂ ( 0 + 𝑥 ) = 𝑥 ↔ ( ℩ 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ) = 0 ) |
| 20 |
11 19
|
mpbi |
⊢ ( ℩ 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ) = 0 |
| 21 |
9 20
|
eqtr2i |
⊢ 0 = ( GId ‘ + ) |