Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
2 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
3 |
1 2
|
iscn2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
4 |
3
|
simprbi |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) |
5 |
4
|
simprd |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
6 |
|
imaeq2 |
⊢ ( 𝑥 = 𝐴 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝐴 ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐽 ) ) |
8 |
7
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ∧ 𝐴 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐽 ) |
9 |
5 8
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐽 ) |