Metamath Proof Explorer


Theorem cnima

Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006)

Ref Expression
Assertion cnima ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴𝐾 ) → ( 𝐹𝐴 ) ∈ 𝐽 )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 eqid 𝐾 = 𝐾
3 1 2 iscn2 ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐽 𝐾 ∧ ∀ 𝑥𝐾 ( 𝐹𝑥 ) ∈ 𝐽 ) ) )
4 3 simprbi ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐹 : 𝐽 𝐾 ∧ ∀ 𝑥𝐾 ( 𝐹𝑥 ) ∈ 𝐽 ) )
5 4 simprd ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ∀ 𝑥𝐾 ( 𝐹𝑥 ) ∈ 𝐽 )
6 imaeq2 ( 𝑥 = 𝐴 → ( 𝐹𝑥 ) = ( 𝐹𝐴 ) )
7 6 eleq1d ( 𝑥 = 𝐴 → ( ( 𝐹𝑥 ) ∈ 𝐽 ↔ ( 𝐹𝐴 ) ∈ 𝐽 ) )
8 7 rspccva ( ( ∀ 𝑥𝐾 ( 𝐹𝑥 ) ∈ 𝐽𝐴𝐾 ) → ( 𝐹𝐴 ) ∈ 𝐽 )
9 5 8 sylan ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴𝐾 ) → ( 𝐹𝐴 ) ∈ 𝐽 )