Metamath Proof Explorer


Theorem cnlimc

Description: F is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Assertion cnlimc ( 𝐴 ⊆ ℂ → ( 𝐹 ∈ ( 𝐴cn→ ℂ ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ ( 𝐹 lim 𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 ssid ℂ ⊆ ℂ
2 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
3 eqid ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 )
4 2 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
5 4 toponrestid ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ )
6 2 3 5 cncfcn ( ( 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐴cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) )
7 1 6 mpan2 ( 𝐴 ⊆ ℂ → ( 𝐴cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) )
8 7 eleq2d ( 𝐴 ⊆ ℂ → ( 𝐹 ∈ ( 𝐴cn→ ℂ ) ↔ 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) )
9 resttopon ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝐴 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) )
10 4 9 mpan ( 𝐴 ⊆ ℂ → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) )
11 cncnp ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) )
12 10 4 11 sylancl ( 𝐴 ⊆ ℂ → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) )
13 2 3 cnplimc ( ( 𝐴 ⊆ ℂ ∧ 𝑥𝐴 ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐹𝑥 ) ∈ ( 𝐹 lim 𝑥 ) ) ) )
14 13 baibd ( ( ( 𝐴 ⊆ ℂ ∧ 𝑥𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ( 𝐹𝑥 ) ∈ ( 𝐹 lim 𝑥 ) ) )
15 14 an32s ( ( ( 𝐴 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ 𝑥𝐴 ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ( 𝐹𝑥 ) ∈ ( 𝐹 lim 𝑥 ) ) )
16 15 ralbidva ( ( 𝐴 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ∀ 𝑥𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ ( 𝐹 lim 𝑥 ) ) )
17 16 pm5.32da ( 𝐴 ⊆ ℂ → ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ ( 𝐹 lim 𝑥 ) ) ) )
18 8 12 17 3bitrd ( 𝐴 ⊆ ℂ → ( 𝐹 ∈ ( 𝐴cn→ ℂ ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ ( 𝐹 lim 𝑥 ) ) ) )