| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 2 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 3 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) |
| 4 |
2
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 5 |
4
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 6 |
2 3 5
|
cncfcn |
⊢ ( ( 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐴 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 7 |
1 6
|
mpan2 |
⊢ ( 𝐴 ⊆ ℂ → ( 𝐴 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 8 |
7
|
eleq2d |
⊢ ( 𝐴 ⊆ ℂ → ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ↔ 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) ) |
| 9 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝐴 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 10 |
4 9
|
mpan |
⊢ ( 𝐴 ⊆ ℂ → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 11 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
| 12 |
10 4 11
|
sylancl |
⊢ ( 𝐴 ⊆ ℂ → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
| 13 |
2 3
|
cnplimc |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) ) ) |
| 14 |
13
|
baibd |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) ) |
| 15 |
14
|
an32s |
⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) ) |
| 16 |
15
|
ralbidva |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) ) |
| 17 |
16
|
pm5.32da |
⊢ ( 𝐴 ⊆ ℂ → ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) ) ) |
| 18 |
8 12 17
|
3bitrd |
⊢ ( 𝐴 ⊆ ℂ → ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) ) ) |