| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnlimci.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ 𝐷 ) ) |
| 2 |
|
cnlimci.c |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
| 3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐹 limℂ 𝑥 ) = ( 𝐹 limℂ 𝐵 ) ) |
| 5 |
3 4
|
eleq12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ↔ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) |
| 6 |
|
cncfrss |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐷 ) → 𝐴 ⊆ ℂ ) |
| 7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 8 |
|
cncfrss2 |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐷 ) → 𝐷 ⊆ ℂ ) |
| 9 |
1 8
|
syl |
⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) |
| 10 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 11 |
|
cncfss |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐴 –cn→ 𝐷 ) ⊆ ( 𝐴 –cn→ ℂ ) ) |
| 12 |
9 10 11
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 –cn→ 𝐷 ) ⊆ ( 𝐴 –cn→ ℂ ) ) |
| 13 |
12 1
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |
| 14 |
|
cnlimc |
⊢ ( 𝐴 ⊆ ℂ → ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) ) ) |
| 15 |
14
|
simplbda |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) |
| 16 |
7 13 15
|
syl2anc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) |
| 17 |
5 16 2
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) |