Metamath Proof Explorer


Theorem cnlimci

Description: If F is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses cnlimci.f ( 𝜑𝐹 ∈ ( 𝐴cn𝐷 ) )
cnlimci.c ( 𝜑𝐵𝐴 )
Assertion cnlimci ( 𝜑 → ( 𝐹𝐵 ) ∈ ( 𝐹 lim 𝐵 ) )

Proof

Step Hyp Ref Expression
1 cnlimci.f ( 𝜑𝐹 ∈ ( 𝐴cn𝐷 ) )
2 cnlimci.c ( 𝜑𝐵𝐴 )
3 fveq2 ( 𝑥 = 𝐵 → ( 𝐹𝑥 ) = ( 𝐹𝐵 ) )
4 oveq2 ( 𝑥 = 𝐵 → ( 𝐹 lim 𝑥 ) = ( 𝐹 lim 𝐵 ) )
5 3 4 eleq12d ( 𝑥 = 𝐵 → ( ( 𝐹𝑥 ) ∈ ( 𝐹 lim 𝑥 ) ↔ ( 𝐹𝐵 ) ∈ ( 𝐹 lim 𝐵 ) ) )
6 cncfrss ( 𝐹 ∈ ( 𝐴cn𝐷 ) → 𝐴 ⊆ ℂ )
7 1 6 syl ( 𝜑𝐴 ⊆ ℂ )
8 cncfrss2 ( 𝐹 ∈ ( 𝐴cn𝐷 ) → 𝐷 ⊆ ℂ )
9 1 8 syl ( 𝜑𝐷 ⊆ ℂ )
10 ssid ℂ ⊆ ℂ
11 cncfss ( ( 𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐴cn𝐷 ) ⊆ ( 𝐴cn→ ℂ ) )
12 9 10 11 sylancl ( 𝜑 → ( 𝐴cn𝐷 ) ⊆ ( 𝐴cn→ ℂ ) )
13 12 1 sseldd ( 𝜑𝐹 ∈ ( 𝐴cn→ ℂ ) )
14 cnlimc ( 𝐴 ⊆ ℂ → ( 𝐹 ∈ ( 𝐴cn→ ℂ ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ ( 𝐹 lim 𝑥 ) ) ) )
15 14 simplbda ( ( 𝐴 ⊆ ℂ ∧ 𝐹 ∈ ( 𝐴cn→ ℂ ) ) → ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ ( 𝐹 lim 𝑥 ) )
16 7 13 15 syl2anc ( 𝜑 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ ( 𝐹 lim 𝑥 ) )
17 5 16 2 rspcdva ( 𝜑 → ( 𝐹𝐵 ) ∈ ( 𝐹 lim 𝐵 ) )