Step |
Hyp |
Ref |
Expression |
1 |
|
cnlmod.w |
⊢ 𝑊 = ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ℂfld 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 } ) |
2 |
|
0cn |
⊢ 0 ∈ ℂ |
3 |
1
|
cnlmodlem1 |
⊢ ( Base ‘ 𝑊 ) = ℂ |
4 |
3
|
eqcomi |
⊢ ℂ = ( Base ‘ 𝑊 ) |
5 |
4
|
a1i |
⊢ ( 0 ∈ ℂ → ℂ = ( Base ‘ 𝑊 ) ) |
6 |
1
|
cnlmodlem2 |
⊢ ( +g ‘ 𝑊 ) = + |
7 |
6
|
eqcomi |
⊢ + = ( +g ‘ 𝑊 ) |
8 |
7
|
a1i |
⊢ ( 0 ∈ ℂ → + = ( +g ‘ 𝑊 ) ) |
9 |
|
addcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
10 |
9
|
3adant1 |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
11 |
|
addass |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( 0 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
13 |
|
id |
⊢ ( 0 ∈ ℂ → 0 ∈ ℂ ) |
14 |
|
addid2 |
⊢ ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 ) |
15 |
14
|
adantl |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 0 + 𝑥 ) = 𝑥 ) |
16 |
|
negcl |
⊢ ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ ) |
17 |
16
|
adantl |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → - 𝑥 ∈ ℂ ) |
18 |
|
id |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) |
19 |
16 18
|
addcomd |
⊢ ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = ( 𝑥 + - 𝑥 ) ) |
20 |
19
|
adantl |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( - 𝑥 + 𝑥 ) = ( 𝑥 + - 𝑥 ) ) |
21 |
|
negid |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = 0 ) |
22 |
21
|
adantl |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 + - 𝑥 ) = 0 ) |
23 |
20 22
|
eqtrd |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( - 𝑥 + 𝑥 ) = 0 ) |
24 |
5 8 10 12 13 15 17 23
|
isgrpd |
⊢ ( 0 ∈ ℂ → 𝑊 ∈ Grp ) |
25 |
4
|
a1i |
⊢ ( 𝑊 ∈ Grp → ℂ = ( Base ‘ 𝑊 ) ) |
26 |
7
|
a1i |
⊢ ( 𝑊 ∈ Grp → + = ( +g ‘ 𝑊 ) ) |
27 |
1
|
cnlmodlem3 |
⊢ ( Scalar ‘ 𝑊 ) = ℂfld |
28 |
27
|
eqcomi |
⊢ ℂfld = ( Scalar ‘ 𝑊 ) |
29 |
28
|
a1i |
⊢ ( 𝑊 ∈ Grp → ℂfld = ( Scalar ‘ 𝑊 ) ) |
30 |
1
|
cnlmod4 |
⊢ ( ·𝑠 ‘ 𝑊 ) = · |
31 |
30
|
eqcomi |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
32 |
31
|
a1i |
⊢ ( 𝑊 ∈ Grp → · = ( ·𝑠 ‘ 𝑊 ) ) |
33 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
34 |
33
|
a1i |
⊢ ( 𝑊 ∈ Grp → ℂ = ( Base ‘ ℂfld ) ) |
35 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
36 |
35
|
a1i |
⊢ ( 𝑊 ∈ Grp → + = ( +g ‘ ℂfld ) ) |
37 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
38 |
37
|
a1i |
⊢ ( 𝑊 ∈ Grp → · = ( .r ‘ ℂfld ) ) |
39 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
40 |
39
|
a1i |
⊢ ( 𝑊 ∈ Grp → 1 = ( 1r ‘ ℂfld ) ) |
41 |
|
cnring |
⊢ ℂfld ∈ Ring |
42 |
41
|
a1i |
⊢ ( 𝑊 ∈ Grp → ℂfld ∈ Ring ) |
43 |
|
id |
⊢ ( 𝑊 ∈ Grp → 𝑊 ∈ Grp ) |
44 |
|
mulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
45 |
44
|
3adant1 |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
46 |
|
adddi |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
47 |
46
|
adantl |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
48 |
|
adddir |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
49 |
48
|
adantl |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
50 |
|
mulass |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
51 |
50
|
adantl |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
52 |
|
mulid2 |
⊢ ( 𝑥 ∈ ℂ → ( 1 · 𝑥 ) = 𝑥 ) |
53 |
52
|
adantl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ ) → ( 1 · 𝑥 ) = 𝑥 ) |
54 |
25 26 29 32 34 36 38 40 42 43 45 47 49 51 53
|
islmodd |
⊢ ( 𝑊 ∈ Grp → 𝑊 ∈ LMod ) |
55 |
2 24 54
|
mp2b |
⊢ 𝑊 ∈ LMod |