Step |
Hyp |
Ref |
Expression |
1 |
|
cnlmod.w |
⊢ 𝑊 = ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ℂfld ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } ) |
2 |
|
addex |
⊢ + ∈ V |
3 |
|
qdass |
⊢ ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ℂfld ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , ℂfld ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } ) |
4 |
1 3
|
eqtri |
⊢ 𝑊 = ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , ℂfld ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } ) |
5 |
4
|
lmodplusg |
⊢ ( + ∈ V → + = ( +g ‘ 𝑊 ) ) |
6 |
5
|
eqcomd |
⊢ ( + ∈ V → ( +g ‘ 𝑊 ) = + ) |
7 |
2 6
|
ax-mp |
⊢ ( +g ‘ 𝑊 ) = + |