Metamath Proof Explorer


Theorem cnlmodlem3

Description: Lemma 3 for cnlmod . (Contributed by AV, 20-Sep-2021)

Ref Expression
Hypothesis cnlmod.w 𝑊 = ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ℂfld ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
Assertion cnlmodlem3 ( Scalar ‘ 𝑊 ) = ℂfld

Proof

Step Hyp Ref Expression
1 cnlmod.w 𝑊 = ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ℂfld ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
2 cnfldex fld ∈ V
3 qdass ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ℂfld ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , ℂfld ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
4 1 3 eqtri 𝑊 = ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , ℂfld ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
5 4 lmodsca ( ℂfld ∈ V → ℂfld = ( Scalar ‘ 𝑊 ) )
6 5 eqcomd ( ℂfld ∈ V → ( Scalar ‘ 𝑊 ) = ℂfld )
7 2 6 ax-mp ( Scalar ‘ 𝑊 ) = ℂfld