| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq1 | ⊢ ( 𝑇  =  if ( 𝑇  ∈  ( LinOp  ∩  ContOp ) ,  𝑇 ,   0hop  )  →  ( 𝑇 ‘ 𝑥 )  =  ( if ( 𝑇  ∈  ( LinOp  ∩  ContOp ) ,  𝑇 ,   0hop  ) ‘ 𝑥 ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝑇  =  if ( 𝑇  ∈  ( LinOp  ∩  ContOp ) ,  𝑇 ,   0hop  )  →  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( ( if ( 𝑇  ∈  ( LinOp  ∩  ContOp ) ,  𝑇 ,   0hop  ) ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 3 | 2 | eqeq1d | ⊢ ( 𝑇  =  if ( 𝑇  ∈  ( LinOp  ∩  ContOp ) ,  𝑇 ,   0hop  )  →  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  ↔  ( ( if ( 𝑇  ∈  ( LinOp  ∩  ContOp ) ,  𝑇 ,   0hop  ) ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) ) ) ) | 
						
							| 4 | 3 | 2ralbidv | ⊢ ( 𝑇  =  if ( 𝑇  ∈  ( LinOp  ∩  ContOp ) ,  𝑇 ,   0hop  )  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( if ( 𝑇  ∈  ( LinOp  ∩  ContOp ) ,  𝑇 ,   0hop  ) ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) ) ) ) | 
						
							| 5 | 4 | reubidv | ⊢ ( 𝑇  =  if ( 𝑇  ∈  ( LinOp  ∩  ContOp ) ,  𝑇 ,   0hop  )  →  ( ∃! 𝑡  ∈  ( LinOp  ∩  ContOp ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  ↔  ∃! 𝑡  ∈  ( LinOp  ∩  ContOp ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( if ( 𝑇  ∈  ( LinOp  ∩  ContOp ) ,  𝑇 ,   0hop  ) ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) ) ) ) | 
						
							| 6 |  | inss1 | ⊢ ( LinOp  ∩  ContOp )  ⊆  LinOp | 
						
							| 7 |  | 0lnop | ⊢  0hop   ∈  LinOp | 
						
							| 8 |  | 0cnop | ⊢  0hop   ∈  ContOp | 
						
							| 9 |  | elin | ⊢ (  0hop   ∈  ( LinOp  ∩  ContOp )  ↔  (  0hop   ∈  LinOp  ∧   0hop   ∈  ContOp ) ) | 
						
							| 10 | 7 8 9 | mpbir2an | ⊢  0hop   ∈  ( LinOp  ∩  ContOp ) | 
						
							| 11 | 10 | elimel | ⊢ if ( 𝑇  ∈  ( LinOp  ∩  ContOp ) ,  𝑇 ,   0hop  )  ∈  ( LinOp  ∩  ContOp ) | 
						
							| 12 | 6 11 | sselii | ⊢ if ( 𝑇  ∈  ( LinOp  ∩  ContOp ) ,  𝑇 ,   0hop  )  ∈  LinOp | 
						
							| 13 |  | inss2 | ⊢ ( LinOp  ∩  ContOp )  ⊆  ContOp | 
						
							| 14 | 13 11 | sselii | ⊢ if ( 𝑇  ∈  ( LinOp  ∩  ContOp ) ,  𝑇 ,   0hop  )  ∈  ContOp | 
						
							| 15 | 12 14 | cnlnadjeui | ⊢ ∃! 𝑡  ∈  ( LinOp  ∩  ContOp ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( if ( 𝑇  ∈  ( LinOp  ∩  ContOp ) ,  𝑇 ,   0hop  ) ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) ) | 
						
							| 16 | 5 15 | dedth | ⊢ ( 𝑇  ∈  ( LinOp  ∩  ContOp )  →  ∃! 𝑡  ∈  ( LinOp  ∩  ContOp ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) ) ) |