Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) → ( 𝑇 ‘ 𝑥 ) = ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ‘ 𝑥 ) ) |
2 |
1
|
oveq1d |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
3 |
2
|
eqeq1d |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ( ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) ) |
4 |
3
|
2ralbidv |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) ) |
5 |
4
|
reubidv |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) → ( ∃! 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ∃! 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) ) |
6 |
|
inss1 |
⊢ ( LinOp ∩ ContOp ) ⊆ LinOp |
7 |
|
0lnop |
⊢ 0hop ∈ LinOp |
8 |
|
0cnop |
⊢ 0hop ∈ ContOp |
9 |
|
elin |
⊢ ( 0hop ∈ ( LinOp ∩ ContOp ) ↔ ( 0hop ∈ LinOp ∧ 0hop ∈ ContOp ) ) |
10 |
7 8 9
|
mpbir2an |
⊢ 0hop ∈ ( LinOp ∩ ContOp ) |
11 |
10
|
elimel |
⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ∈ ( LinOp ∩ ContOp ) |
12 |
6 11
|
sselii |
⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ∈ LinOp |
13 |
|
inss2 |
⊢ ( LinOp ∩ ContOp ) ⊆ ContOp |
14 |
13 11
|
sselii |
⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ∈ ContOp |
15 |
12 14
|
cnlnadjeui |
⊢ ∃! 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) |
16 |
5 15
|
dedth |
⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) → ∃! 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) |