Step |
Hyp |
Ref |
Expression |
1 |
|
cnlnadj.1 |
⊢ 𝑇 ∈ LinOp |
2 |
|
cnlnadj.2 |
⊢ 𝑇 ∈ ContOp |
3 |
1 2
|
cnlnadji |
⊢ ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) |
4 |
|
adjmo |
⊢ ∃* 𝑡 ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) |
5 |
|
inss1 |
⊢ ( LinOp ∩ ContOp ) ⊆ LinOp |
6 |
5
|
sseli |
⊢ ( 𝑡 ∈ ( LinOp ∩ ContOp ) → 𝑡 ∈ LinOp ) |
7 |
|
lnopf |
⊢ ( 𝑡 ∈ LinOp → 𝑡 : ℋ ⟶ ℋ ) |
8 |
6 7
|
syl |
⊢ ( 𝑡 ∈ ( LinOp ∩ ContOp ) → 𝑡 : ℋ ⟶ ℋ ) |
9 |
|
simpl |
⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) → 𝑡 : ℋ ⟶ ℋ ) |
10 |
|
eqcom |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
11 |
10
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
12 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
13 |
|
adjsym |
⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
14 |
12 13
|
mpan2 |
⊢ ( 𝑡 : ℋ ⟶ ℋ → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
15 |
11 14
|
syl5bb |
⊢ ( 𝑡 : ℋ ⟶ ℋ → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
16 |
15
|
biimpa |
⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) |
17 |
9 16
|
jca |
⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) → ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
18 |
8 17
|
sylan |
⊢ ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) → ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
19 |
18
|
moimi |
⊢ ( ∃* 𝑡 ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) → ∃* 𝑡 ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) ) |
20 |
|
df-rmo |
⊢ ( ∃* 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ∃* 𝑡 ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) ) |
21 |
19 20
|
sylibr |
⊢ ( ∃* 𝑡 ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) → ∃* 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) |
22 |
4 21
|
ax-mp |
⊢ ∃* 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) |
23 |
|
reu5 |
⊢ ( ∃! 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ( ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ∧ ∃* 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) ) |
24 |
3 22 23
|
mpbir2an |
⊢ ∃! 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) |