Step |
Hyp |
Ref |
Expression |
1 |
|
cnlnadj.1 |
⊢ 𝑇 ∈ LinOp |
2 |
|
cnlnadj.2 |
⊢ 𝑇 ∈ ContOp |
3 |
|
eqid |
⊢ ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑧 ) ) = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑧 ) ) |
4 |
|
oveq2 |
⊢ ( 𝑓 = 𝑤 → ( 𝑣 ·ih 𝑓 ) = ( 𝑣 ·ih 𝑤 ) ) |
5 |
4
|
eqeq2d |
⊢ ( 𝑓 = 𝑤 → ( ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑓 = 𝑤 → ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
7 |
6
|
cbvriotavw |
⊢ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) |
8 |
|
eqid |
⊢ ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) = ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) |
9 |
1 2 3 7 8
|
cnlnadjlem9 |
⊢ ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) |