Metamath Proof Explorer


Theorem cnlnadjlem1

Description: Lemma for cnlnadji (Theorem 3.10 of Beran p. 104: every continuous linear operator has an adjoint). The value of the auxiliary functional G . (Contributed by NM, 16-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇𝑔 ) ·ih 𝑦 ) )
Assertion cnlnadjlem1 ( 𝐴 ∈ ℋ → ( 𝐺𝐴 ) = ( ( 𝑇𝐴 ) ·ih 𝑦 ) )

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1 𝑇 ∈ LinOp
2 cnlnadjlem.2 𝑇 ∈ ContOp
3 cnlnadjlem.3 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇𝑔 ) ·ih 𝑦 ) )
4 fveq2 ( 𝑔 = 𝐴 → ( 𝑇𝑔 ) = ( 𝑇𝐴 ) )
5 4 oveq1d ( 𝑔 = 𝐴 → ( ( 𝑇𝑔 ) ·ih 𝑦 ) = ( ( 𝑇𝐴 ) ·ih 𝑦 ) )
6 ovex ( ( 𝑇𝐴 ) ·ih 𝑦 ) ∈ V
7 5 3 6 fvmpt ( 𝐴 ∈ ℋ → ( 𝐺𝐴 ) = ( ( 𝑇𝐴 ) ·ih 𝑦 ) )