Step |
Hyp |
Ref |
Expression |
1 |
|
cnlnadjlem.1 |
⊢ 𝑇 ∈ LinOp |
2 |
|
cnlnadjlem.2 |
⊢ 𝑇 ∈ ContOp |
3 |
|
cnlnadjlem.3 |
⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) |
4 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
5 |
4
|
ffvelrni |
⊢ ( 𝑔 ∈ ℋ → ( 𝑇 ‘ 𝑔 ) ∈ ℋ ) |
6 |
|
hicl |
⊢ ( ( ( 𝑇 ‘ 𝑔 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ∈ ℂ ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝑔 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ∈ ℂ ) |
8 |
7
|
ancoms |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑔 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ∈ ℂ ) |
9 |
8 3
|
fmptd |
⊢ ( 𝑦 ∈ ℋ → 𝐺 : ℋ ⟶ ℂ ) |
10 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ) |
11 |
1
|
lnopaddi |
⊢ ( ( ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
12 |
11
|
3adant3 |
⊢ ( ( ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
13 |
12
|
oveq1d |
⊢ ( ( ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑦 ) ) |
14 |
4
|
ffvelrni |
⊢ ( ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ∈ ℋ ) |
15 |
4
|
ffvelrni |
⊢ ( 𝑧 ∈ ℋ → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
16 |
|
id |
⊢ ( 𝑦 ∈ ℋ → 𝑦 ∈ ℋ ) |
17 |
|
ax-his2 |
⊢ ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑧 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) |
18 |
14 15 16 17
|
syl3an |
⊢ ( ( ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) |
19 |
13 18
|
eqtrd |
⊢ ( ( ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) |
20 |
19
|
3comr |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) |
21 |
20
|
3expa |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) |
22 |
10 21
|
sylanl2 |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) |
23 |
|
hvaddcl |
⊢ ( ( ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ∈ ℋ ) |
24 |
10 23
|
sylan |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ∈ ℋ ) |
25 |
1 2 3
|
cnlnadjlem1 |
⊢ ( ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ∈ ℋ → ( 𝐺 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) ) |
26 |
24 25
|
syl |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( 𝐺 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) ) |
27 |
26
|
adantll |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝐺 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) ) |
28 |
4
|
ffvelrni |
⊢ ( 𝑤 ∈ ℋ → ( 𝑇 ‘ 𝑤 ) ∈ ℋ ) |
29 |
|
ax-his3 |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑤 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑤 ) ) ·ih 𝑦 ) = ( 𝑥 · ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) ) |
30 |
28 29
|
syl3an2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑤 ) ) ·ih 𝑦 ) = ( 𝑥 · ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) ) |
31 |
30
|
3comr |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑤 ) ) ·ih 𝑦 ) = ( 𝑥 · ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) ) |
32 |
31
|
3expb |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑤 ) ) ·ih 𝑦 ) = ( 𝑥 · ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) ) |
33 |
1
|
lnopmuli |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) = ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑤 ) ) ) |
34 |
33
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑤 ) ) ·ih 𝑦 ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑤 ) ) ·ih 𝑦 ) ) |
36 |
1 2 3
|
cnlnadjlem1 |
⊢ ( 𝑤 ∈ ℋ → ( 𝐺 ‘ 𝑤 ) = ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝑤 ∈ ℋ → ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) = ( 𝑥 · ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) ) |
38 |
37
|
ad2antll |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) → ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) = ( 𝑥 · ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) ) |
39 |
32 35 38
|
3eqtr4rd |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) → ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) = ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) ) |
40 |
1 2 3
|
cnlnadjlem1 |
⊢ ( 𝑧 ∈ ℋ → ( 𝐺 ‘ 𝑧 ) = ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) |
41 |
39 40
|
oveqan12d |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) + ( 𝐺 ‘ 𝑧 ) ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) |
42 |
22 27 41
|
3eqtr4d |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝐺 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) + ( 𝐺 ‘ 𝑧 ) ) ) |
43 |
42
|
ralrimiva |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) → ∀ 𝑧 ∈ ℋ ( 𝐺 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) + ( 𝐺 ‘ 𝑧 ) ) ) |
44 |
43
|
ralrimivva |
⊢ ( 𝑦 ∈ ℋ → ∀ 𝑥 ∈ ℂ ∀ 𝑤 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝐺 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) + ( 𝐺 ‘ 𝑧 ) ) ) |
45 |
|
ellnfn |
⊢ ( 𝐺 ∈ LinFn ↔ ( 𝐺 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑤 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝐺 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) + ( 𝐺 ‘ 𝑧 ) ) ) ) |
46 |
9 44 45
|
sylanbrc |
⊢ ( 𝑦 ∈ ℋ → 𝐺 ∈ LinFn ) |
47 |
1 2
|
nmcopexi |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
48 |
|
normcl |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℝ ) |
49 |
|
remulcl |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
50 |
47 48 49
|
sylancr |
⊢ ( 𝑦 ∈ ℋ → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
51 |
40
|
adantr |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝐺 ‘ 𝑧 ) = ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) |
52 |
|
hicl |
⊢ ( ( ( 𝑇 ‘ 𝑧 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ∈ ℂ ) |
53 |
15 52
|
sylan |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ∈ ℂ ) |
54 |
51 53
|
eqeltrd |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
55 |
54
|
abscld |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ℝ ) |
56 |
|
normcl |
⊢ ( ( 𝑇 ‘ 𝑧 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ) |
57 |
15 56
|
syl |
⊢ ( 𝑧 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ) |
58 |
|
remulcl |
⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
59 |
57 48 58
|
syl2an |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
60 |
|
normcl |
⊢ ( 𝑧 ∈ ℋ → ( normℎ ‘ 𝑧 ) ∈ ℝ ) |
61 |
|
remulcl |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normℎ ‘ 𝑧 ) ∈ ℝ ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ∈ ℝ ) |
62 |
47 60 61
|
sylancr |
⊢ ( 𝑧 ∈ ℋ → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ∈ ℝ ) |
63 |
|
remulcl |
⊢ ( ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
64 |
62 48 63
|
syl2an |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
65 |
51
|
fveq2d |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) = ( abs ‘ ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) |
66 |
|
bcs |
⊢ ( ( ( 𝑇 ‘ 𝑧 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ≤ ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ) |
67 |
15 66
|
sylan |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ≤ ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ) |
68 |
65 67
|
eqbrtrd |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ) |
69 |
57
|
adantr |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ) |
70 |
62
|
adantr |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ∈ ℝ ) |
71 |
|
normge0 |
⊢ ( 𝑦 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝑦 ) ) |
72 |
48 71
|
jca |
⊢ ( 𝑦 ∈ ℋ → ( ( normℎ ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝑦 ) ) ) |
73 |
72
|
adantl |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝑦 ) ) ) |
74 |
1 2
|
nmcoplbi |
⊢ ( 𝑧 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) |
75 |
74
|
adantr |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) |
76 |
|
lemul1a |
⊢ ( ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ∧ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ∈ ℝ ∧ ( ( normℎ ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝑦 ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ) |
77 |
69 70 73 75 76
|
syl31anc |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ) |
78 |
55 59 64 68 77
|
letrd |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ) |
79 |
60
|
recnd |
⊢ ( 𝑧 ∈ ℋ → ( normℎ ‘ 𝑧 ) ∈ ℂ ) |
80 |
48
|
recnd |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℂ ) |
81 |
47
|
recni |
⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
82 |
|
mul32 |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( normℎ ‘ 𝑧 ) ∈ ℂ ∧ ( normℎ ‘ 𝑦 ) ∈ ℂ ) → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) = ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) |
83 |
81 82
|
mp3an1 |
⊢ ( ( ( normℎ ‘ 𝑧 ) ∈ ℂ ∧ ( normℎ ‘ 𝑦 ) ∈ ℂ ) → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) = ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) |
84 |
79 80 83
|
syl2an |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) = ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) |
85 |
78 84
|
breqtrd |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) |
86 |
85
|
ancoms |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) |
87 |
86
|
ralrimiva |
⊢ ( 𝑦 ∈ ℋ → ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) |
88 |
|
oveq1 |
⊢ ( 𝑥 = ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) → ( 𝑥 · ( normℎ ‘ 𝑧 ) ) = ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) |
89 |
88
|
breq2d |
⊢ ( 𝑥 = ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) → ( ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ↔ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) ) |
90 |
89
|
ralbidv |
⊢ ( 𝑥 = ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) → ( ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) ) |
91 |
90
|
rspcev |
⊢ ( ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ∧ ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ) |
92 |
50 87 91
|
syl2anc |
⊢ ( 𝑦 ∈ ℋ → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ) |
93 |
|
lnfncon |
⊢ ( 𝐺 ∈ LinFn → ( 𝐺 ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ) ) |
94 |
46 93
|
syl |
⊢ ( 𝑦 ∈ ℋ → ( 𝐺 ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ) ) |
95 |
92 94
|
mpbird |
⊢ ( 𝑦 ∈ ℋ → 𝐺 ∈ ContFn ) |
96 |
46 95
|
jca |
⊢ ( 𝑦 ∈ ℋ → ( 𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn ) ) |