| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnlnadjlem.1 | ⊢ 𝑇  ∈  LinOp | 
						
							| 2 |  | cnlnadjlem.2 | ⊢ 𝑇  ∈  ContOp | 
						
							| 3 |  | cnlnadjlem.3 | ⊢ 𝐺  =  ( 𝑔  ∈   ℋ  ↦  ( ( 𝑇 ‘ 𝑔 )  ·ih  𝑦 ) ) | 
						
							| 4 | 1 | lnopfi | ⊢ 𝑇 :  ℋ ⟶  ℋ | 
						
							| 5 | 4 | ffvelcdmi | ⊢ ( 𝑔  ∈   ℋ  →  ( 𝑇 ‘ 𝑔 )  ∈   ℋ ) | 
						
							| 6 |  | hicl | ⊢ ( ( ( 𝑇 ‘ 𝑔 )  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑔 )  ·ih  𝑦 )  ∈  ℂ ) | 
						
							| 7 | 5 6 | sylan | ⊢ ( ( 𝑔  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑔 )  ·ih  𝑦 )  ∈  ℂ ) | 
						
							| 8 | 7 | ancoms | ⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑔  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑔 )  ·ih  𝑦 )  ∈  ℂ ) | 
						
							| 9 | 8 3 | fmptd | ⊢ ( 𝑦  ∈   ℋ  →  𝐺 :  ℋ ⟶ ℂ ) | 
						
							| 10 |  | hvmulcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ )  →  ( 𝑥  ·ℎ  𝑤 )  ∈   ℋ ) | 
						
							| 11 | 1 | lnopaddi | ⊢ ( ( ( 𝑥  ·ℎ  𝑤 )  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  =  ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) ) ) | 
						
							| 12 | 11 | 3adant3 | ⊢ ( ( ( 𝑥  ·ℎ  𝑤 )  ∈   ℋ  ∧  𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  =  ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) ) ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( ( ( 𝑥  ·ℎ  𝑤 )  ∈   ℋ  ∧  𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  ·ih  𝑦 )  =  ( ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) )  ·ih  𝑦 ) ) | 
						
							| 14 | 4 | ffvelcdmi | ⊢ ( ( 𝑥  ·ℎ  𝑤 )  ∈   ℋ  →  ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  ∈   ℋ ) | 
						
							| 15 | 4 | ffvelcdmi | ⊢ ( 𝑧  ∈   ℋ  →  ( 𝑇 ‘ 𝑧 )  ∈   ℋ ) | 
						
							| 16 |  | id | ⊢ ( 𝑦  ∈   ℋ  →  𝑦  ∈   ℋ ) | 
						
							| 17 |  | ax-his2 | ⊢ ( ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  ∈   ℋ  ∧  ( 𝑇 ‘ 𝑧 )  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) )  ·ih  𝑦 )  =  ( ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  ·ih  𝑦 )  +  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑦 ) ) ) | 
						
							| 18 | 14 15 16 17 | syl3an | ⊢ ( ( ( 𝑥  ·ℎ  𝑤 )  ∈   ℋ  ∧  𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) )  ·ih  𝑦 )  =  ( ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  ·ih  𝑦 )  +  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑦 ) ) ) | 
						
							| 19 | 13 18 | eqtrd | ⊢ ( ( ( 𝑥  ·ℎ  𝑤 )  ∈   ℋ  ∧  𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  ·ih  𝑦 )  =  ( ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  ·ih  𝑦 )  +  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑦 ) ) ) | 
						
							| 20 | 19 | 3comr | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ( 𝑥  ·ℎ  𝑤 )  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  ·ih  𝑦 )  =  ( ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  ·ih  𝑦 )  +  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑦 ) ) ) | 
						
							| 21 | 20 | 3expa | ⊢ ( ( ( 𝑦  ∈   ℋ  ∧  ( 𝑥  ·ℎ  𝑤 )  ∈   ℋ )  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  ·ih  𝑦 )  =  ( ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  ·ih  𝑦 )  +  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑦 ) ) ) | 
						
							| 22 | 10 21 | sylanl2 | ⊢ ( ( ( 𝑦  ∈   ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  ·ih  𝑦 )  =  ( ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  ·ih  𝑦 )  +  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑦 ) ) ) | 
						
							| 23 |  | hvaddcl | ⊢ ( ( ( 𝑥  ·ℎ  𝑤 )  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 )  ∈   ℋ ) | 
						
							| 24 | 10 23 | sylan | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ )  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 )  ∈   ℋ ) | 
						
							| 25 | 1 2 3 | cnlnadjlem1 | ⊢ ( ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 )  ∈   ℋ  →  ( 𝐺 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  =  ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  ·ih  𝑦 ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ )  ∧  𝑧  ∈   ℋ )  →  ( 𝐺 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  =  ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  ·ih  𝑦 ) ) | 
						
							| 27 | 26 | adantll | ⊢ ( ( ( 𝑦  ∈   ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  →  ( 𝐺 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  =  ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  ·ih  𝑦 ) ) | 
						
							| 28 | 4 | ffvelcdmi | ⊢ ( 𝑤  ∈   ℋ  →  ( 𝑇 ‘ 𝑤 )  ∈   ℋ ) | 
						
							| 29 |  | ax-his3 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑇 ‘ 𝑤 )  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑤 ) )  ·ih  𝑦 )  =  ( 𝑥  ·  ( ( 𝑇 ‘ 𝑤 )  ·ih  𝑦 ) ) ) | 
						
							| 30 | 28 29 | syl3an2 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑤 ) )  ·ih  𝑦 )  =  ( 𝑥  ·  ( ( 𝑇 ‘ 𝑤 )  ·ih  𝑦 ) ) ) | 
						
							| 31 | 30 | 3comr | ⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑤 ) )  ·ih  𝑦 )  =  ( 𝑥  ·  ( ( 𝑇 ‘ 𝑤 )  ·ih  𝑦 ) ) ) | 
						
							| 32 | 31 | 3expb | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ ) )  →  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑤 ) )  ·ih  𝑦 )  =  ( 𝑥  ·  ( ( 𝑇 ‘ 𝑤 )  ·ih  𝑦 ) ) ) | 
						
							| 33 | 1 | lnopmuli | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ )  →  ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  =  ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑤 ) ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  ·ih  𝑦 )  =  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑤 ) )  ·ih  𝑦 ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ ) )  →  ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  ·ih  𝑦 )  =  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑤 ) )  ·ih  𝑦 ) ) | 
						
							| 36 | 1 2 3 | cnlnadjlem1 | ⊢ ( 𝑤  ∈   ℋ  →  ( 𝐺 ‘ 𝑤 )  =  ( ( 𝑇 ‘ 𝑤 )  ·ih  𝑦 ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( 𝑤  ∈   ℋ  →  ( 𝑥  ·  ( 𝐺 ‘ 𝑤 ) )  =  ( 𝑥  ·  ( ( 𝑇 ‘ 𝑤 )  ·ih  𝑦 ) ) ) | 
						
							| 38 | 37 | ad2antll | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ ) )  →  ( 𝑥  ·  ( 𝐺 ‘ 𝑤 ) )  =  ( 𝑥  ·  ( ( 𝑇 ‘ 𝑤 )  ·ih  𝑦 ) ) ) | 
						
							| 39 | 32 35 38 | 3eqtr4rd | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ ) )  →  ( 𝑥  ·  ( 𝐺 ‘ 𝑤 ) )  =  ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  ·ih  𝑦 ) ) | 
						
							| 40 | 1 2 3 | cnlnadjlem1 | ⊢ ( 𝑧  ∈   ℋ  →  ( 𝐺 ‘ 𝑧 )  =  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑦 ) ) | 
						
							| 41 | 39 40 | oveqan12d | ⊢ ( ( ( 𝑦  ∈   ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑥  ·  ( 𝐺 ‘ 𝑤 ) )  +  ( 𝐺 ‘ 𝑧 ) )  =  ( ( ( 𝑇 ‘ ( 𝑥  ·ℎ  𝑤 ) )  ·ih  𝑦 )  +  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑦 ) ) ) | 
						
							| 42 | 22 27 41 | 3eqtr4d | ⊢ ( ( ( 𝑦  ∈   ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  →  ( 𝐺 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·  ( 𝐺 ‘ 𝑤 ) )  +  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 43 | 42 | ralrimiva | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑤  ∈   ℋ ) )  →  ∀ 𝑧  ∈   ℋ ( 𝐺 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·  ( 𝐺 ‘ 𝑤 ) )  +  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 44 | 43 | ralrimivva | ⊢ ( 𝑦  ∈   ℋ  →  ∀ 𝑥  ∈  ℂ ∀ 𝑤  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝐺 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·  ( 𝐺 ‘ 𝑤 ) )  +  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 45 |  | ellnfn | ⊢ ( 𝐺  ∈  LinFn  ↔  ( 𝐺 :  ℋ ⟶ ℂ  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑤  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝐺 ‘ ( ( 𝑥  ·ℎ  𝑤 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·  ( 𝐺 ‘ 𝑤 ) )  +  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 46 | 9 44 45 | sylanbrc | ⊢ ( 𝑦  ∈   ℋ  →  𝐺  ∈  LinFn ) | 
						
							| 47 | 1 2 | nmcopexi | ⊢ ( normop ‘ 𝑇 )  ∈  ℝ | 
						
							| 48 |  | normcl | ⊢ ( 𝑦  ∈   ℋ  →  ( normℎ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 49 |  | remulcl | ⊢ ( ( ( normop ‘ 𝑇 )  ∈  ℝ  ∧  ( normℎ ‘ 𝑦 )  ∈  ℝ )  →  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 50 | 47 48 49 | sylancr | ⊢ ( 𝑦  ∈   ℋ  →  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 51 | 40 | adantr | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝐺 ‘ 𝑧 )  =  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑦 ) ) | 
						
							| 52 |  | hicl | ⊢ ( ( ( 𝑇 ‘ 𝑧 )  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑦 )  ∈  ℂ ) | 
						
							| 53 | 15 52 | sylan | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑦 )  ∈  ℂ ) | 
						
							| 54 | 51 53 | eqeltrd | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝐺 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 55 | 54 | abscld | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 56 |  | normcl | ⊢ ( ( 𝑇 ‘ 𝑧 )  ∈   ℋ  →  ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 57 | 15 56 | syl | ⊢ ( 𝑧  ∈   ℋ  →  ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 58 |  | remulcl | ⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) )  ∈  ℝ  ∧  ( normℎ ‘ 𝑦 )  ∈  ℝ )  →  ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) )  ·  ( normℎ ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 59 | 57 48 58 | syl2an | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) )  ·  ( normℎ ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 60 |  | normcl | ⊢ ( 𝑧  ∈   ℋ  →  ( normℎ ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 61 |  | remulcl | ⊢ ( ( ( normop ‘ 𝑇 )  ∈  ℝ  ∧  ( normℎ ‘ 𝑧 )  ∈  ℝ )  →  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 62 | 47 60 61 | sylancr | ⊢ ( 𝑧  ∈   ℋ  →  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 63 |  | remulcl | ⊢ ( ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) )  ∈  ℝ  ∧  ( normℎ ‘ 𝑦 )  ∈  ℝ )  →  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) )  ·  ( normℎ ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 64 | 62 48 63 | syl2an | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) )  ·  ( normℎ ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 65 | 51 | fveq2d | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  =  ( abs ‘ ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑦 ) ) ) | 
						
							| 66 |  | bcs | ⊢ ( ( ( 𝑇 ‘ 𝑧 )  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( abs ‘ ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑦 ) )  ≤  ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) )  ·  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 67 | 15 66 | sylan | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( abs ‘ ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑦 ) )  ≤  ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) )  ·  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 68 | 65 67 | eqbrtrd | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ≤  ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) )  ·  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 69 | 57 | adantr | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 70 | 62 | adantr | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 71 |  | normge0 | ⊢ ( 𝑦  ∈   ℋ  →  0  ≤  ( normℎ ‘ 𝑦 ) ) | 
						
							| 72 | 48 71 | jca | ⊢ ( 𝑦  ∈   ℋ  →  ( ( normℎ ‘ 𝑦 )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( normℎ ‘ 𝑦 )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 74 | 1 2 | nmcoplbi | ⊢ ( 𝑧  ∈   ℋ  →  ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) ) ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) ) ) | 
						
							| 76 |  | lemul1a | ⊢ ( ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) )  ∈  ℝ  ∧  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) )  ∈  ℝ  ∧  ( ( normℎ ‘ 𝑦 )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ 𝑦 ) ) )  ∧  ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) ) )  →  ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) )  ·  ( normℎ ‘ 𝑦 ) )  ≤  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) )  ·  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 77 | 69 70 73 75 76 | syl31anc | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) )  ·  ( normℎ ‘ 𝑦 ) )  ≤  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) )  ·  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 78 | 55 59 64 68 77 | letrd | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ≤  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) )  ·  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 79 | 60 | recnd | ⊢ ( 𝑧  ∈   ℋ  →  ( normℎ ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 80 | 48 | recnd | ⊢ ( 𝑦  ∈   ℋ  →  ( normℎ ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 81 | 47 | recni | ⊢ ( normop ‘ 𝑇 )  ∈  ℂ | 
						
							| 82 |  | mul32 | ⊢ ( ( ( normop ‘ 𝑇 )  ∈  ℂ  ∧  ( normℎ ‘ 𝑧 )  ∈  ℂ  ∧  ( normℎ ‘ 𝑦 )  ∈  ℂ )  →  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) )  ·  ( normℎ ‘ 𝑦 ) )  =  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  ·  ( normℎ ‘ 𝑧 ) ) ) | 
						
							| 83 | 81 82 | mp3an1 | ⊢ ( ( ( normℎ ‘ 𝑧 )  ∈  ℂ  ∧  ( normℎ ‘ 𝑦 )  ∈  ℂ )  →  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) )  ·  ( normℎ ‘ 𝑦 ) )  =  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  ·  ( normℎ ‘ 𝑧 ) ) ) | 
						
							| 84 | 79 80 83 | syl2an | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑧 ) )  ·  ( normℎ ‘ 𝑦 ) )  =  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  ·  ( normℎ ‘ 𝑧 ) ) ) | 
						
							| 85 | 78 84 | breqtrd | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ≤  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  ·  ( normℎ ‘ 𝑧 ) ) ) | 
						
							| 86 | 85 | ancoms | ⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ≤  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  ·  ( normℎ ‘ 𝑧 ) ) ) | 
						
							| 87 | 86 | ralrimiva | ⊢ ( 𝑦  ∈   ℋ  →  ∀ 𝑧  ∈   ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ≤  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  ·  ( normℎ ‘ 𝑧 ) ) ) | 
						
							| 88 |  | oveq1 | ⊢ ( 𝑥  =  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  →  ( 𝑥  ·  ( normℎ ‘ 𝑧 ) )  =  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  ·  ( normℎ ‘ 𝑧 ) ) ) | 
						
							| 89 | 88 | breq2d | ⊢ ( 𝑥  =  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  →  ( ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ≤  ( 𝑥  ·  ( normℎ ‘ 𝑧 ) )  ↔  ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ≤  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  ·  ( normℎ ‘ 𝑧 ) ) ) ) | 
						
							| 90 | 89 | ralbidv | ⊢ ( 𝑥  =  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  →  ( ∀ 𝑧  ∈   ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ≤  ( 𝑥  ·  ( normℎ ‘ 𝑧 ) )  ↔  ∀ 𝑧  ∈   ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ≤  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  ·  ( normℎ ‘ 𝑧 ) ) ) ) | 
						
							| 91 | 90 | rspcev | ⊢ ( ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  ∈  ℝ  ∧  ∀ 𝑧  ∈   ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ≤  ( ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) )  ·  ( normℎ ‘ 𝑧 ) ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈   ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ≤  ( 𝑥  ·  ( normℎ ‘ 𝑧 ) ) ) | 
						
							| 92 | 50 87 91 | syl2anc | ⊢ ( 𝑦  ∈   ℋ  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈   ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ≤  ( 𝑥  ·  ( normℎ ‘ 𝑧 ) ) ) | 
						
							| 93 |  | lnfncon | ⊢ ( 𝐺  ∈  LinFn  →  ( 𝐺  ∈  ContFn  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈   ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ≤  ( 𝑥  ·  ( normℎ ‘ 𝑧 ) ) ) ) | 
						
							| 94 | 46 93 | syl | ⊢ ( 𝑦  ∈   ℋ  →  ( 𝐺  ∈  ContFn  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈   ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) )  ≤  ( 𝑥  ·  ( normℎ ‘ 𝑧 ) ) ) ) | 
						
							| 95 | 92 94 | mpbird | ⊢ ( 𝑦  ∈   ℋ  →  𝐺  ∈  ContFn ) | 
						
							| 96 | 46 95 | jca | ⊢ ( 𝑦  ∈   ℋ  →  ( 𝐺  ∈  LinFn  ∧  𝐺  ∈  ContFn ) ) |