Metamath Proof Explorer


Theorem cnlnadjlem3

Description: Lemma for cnlnadji . By riesz4 , B is the unique vector such that ( Tv ) .ih y ) = ( v .ih w ) for all v . (Contributed by NM, 17-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇𝑔 ) ·ih 𝑦 ) )
cnlnadjlem.4 𝐵 = ( 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) )
Assertion cnlnadjlem3 ( 𝑦 ∈ ℋ → 𝐵 ∈ ℋ )

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1 𝑇 ∈ LinOp
2 cnlnadjlem.2 𝑇 ∈ ContOp
3 cnlnadjlem.3 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇𝑔 ) ·ih 𝑦 ) )
4 cnlnadjlem.4 𝐵 = ( 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) )
5 1 2 3 cnlnadjlem2 ( 𝑦 ∈ ℋ → ( 𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn ) )
6 elin ( 𝐺 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn ) )
7 5 6 sylibr ( 𝑦 ∈ ℋ → 𝐺 ∈ ( LinFn ∩ ContFn ) )
8 riesz4 ( 𝐺 ∈ ( LinFn ∩ ContFn ) → ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝐺𝑣 ) = ( 𝑣 ·ih 𝑤 ) )
9 7 8 syl ( 𝑦 ∈ ℋ → ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝐺𝑣 ) = ( 𝑣 ·ih 𝑤 ) )
10 1 2 3 cnlnadjlem1 ( 𝑣 ∈ ℋ → ( 𝐺𝑣 ) = ( ( 𝑇𝑣 ) ·ih 𝑦 ) )
11 10 eqeq1d ( 𝑣 ∈ ℋ → ( ( 𝐺𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) )
12 11 ralbiia ( ∀ 𝑣 ∈ ℋ ( 𝐺𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) )
13 12 reubii ( ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝐺𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) )
14 9 13 sylib ( 𝑦 ∈ ℋ → ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) )
15 riotacl ( ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) → ( 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) ∈ ℋ )
16 14 15 syl ( 𝑦 ∈ ℋ → ( 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) ∈ ℋ )
17 4 16 eqeltrid ( 𝑦 ∈ ℋ → 𝐵 ∈ ℋ )