Step |
Hyp |
Ref |
Expression |
1 |
|
cnlnadjlem.1 |
⊢ 𝑇 ∈ LinOp |
2 |
|
cnlnadjlem.2 |
⊢ 𝑇 ∈ ContOp |
3 |
|
cnlnadjlem.3 |
⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) |
4 |
|
cnlnadjlem.4 |
⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) |
5 |
1 2 3
|
cnlnadjlem2 |
⊢ ( 𝑦 ∈ ℋ → ( 𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn ) ) |
6 |
|
elin |
⊢ ( 𝐺 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn ) ) |
7 |
5 6
|
sylibr |
⊢ ( 𝑦 ∈ ℋ → 𝐺 ∈ ( LinFn ∩ ContFn ) ) |
8 |
|
riesz4 |
⊢ ( 𝐺 ∈ ( LinFn ∩ ContFn ) → ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝐺 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑦 ∈ ℋ → ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝐺 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
10 |
1 2 3
|
cnlnadjlem1 |
⊢ ( 𝑣 ∈ ℋ → ( 𝐺 ‘ 𝑣 ) = ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑣 ∈ ℋ → ( ( 𝐺 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
12 |
11
|
ralbiia |
⊢ ( ∀ 𝑣 ∈ ℋ ( 𝐺 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) |
13 |
12
|
reubii |
⊢ ( ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝐺 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) |
14 |
9 13
|
sylib |
⊢ ( 𝑦 ∈ ℋ → ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) |
15 |
|
riotacl |
⊢ ( ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) → ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) ∈ ℋ ) |
16 |
14 15
|
syl |
⊢ ( 𝑦 ∈ ℋ → ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) ∈ ℋ ) |
17 |
4 16
|
eqeltrid |
⊢ ( 𝑦 ∈ ℋ → 𝐵 ∈ ℋ ) |