Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Operators on Hilbert spaces
Adjoints (cont.)
cnlnadjlem4
Metamath Proof Explorer
Description: Lemma for cnlnadji . The values of auxiliary function F are
vectors. (Contributed by NM , 17-Feb-2006) (Proof shortened by Mario
Carneiro , 10-Sep-2015) (New usage is discouraged.)
Ref
Expression
Hypotheses
cnlnadjlem.1
⊢ 𝑇 ∈ LinOp
cnlnadjlem.2
⊢ 𝑇 ∈ ContOp
cnlnadjlem.3
⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) · ih 𝑦 ) )
cnlnadjlem.4
⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) · ih 𝑦 ) = ( 𝑣 · ih 𝑤 ) )
cnlnadjlem.5
⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 )
Assertion
cnlnadjlem4
⊢ ( 𝐴 ∈ ℋ → ( 𝐹 ‘ 𝐴 ) ∈ ℋ )
Proof
Step
Hyp
Ref
Expression
1
cnlnadjlem.1
⊢ 𝑇 ∈ LinOp
2
cnlnadjlem.2
⊢ 𝑇 ∈ ContOp
3
cnlnadjlem.3
⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) · ih 𝑦 ) )
4
cnlnadjlem.4
⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) · ih 𝑦 ) = ( 𝑣 · ih 𝑤 ) )
5
cnlnadjlem.5
⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 )
6
1 2 3 4
cnlnadjlem3
⊢ ( 𝑦 ∈ ℋ → 𝐵 ∈ ℋ )
7
5 6
fmpti
⊢ 𝐹 : ℋ ⟶ ℋ
8
7
ffvelrni
⊢ ( 𝐴 ∈ ℋ → ( 𝐹 ‘ 𝐴 ) ∈ ℋ )