Metamath Proof Explorer


Theorem cnlnadjlem4

Description: Lemma for cnlnadji . The values of auxiliary function F are vectors. (Contributed by NM, 17-Feb-2006) (Proof shortened by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇𝑔 ) ·ih 𝑦 ) )
cnlnadjlem.4 𝐵 = ( 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) )
cnlnadjlem.5 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 )
Assertion cnlnadjlem4 ( 𝐴 ∈ ℋ → ( 𝐹𝐴 ) ∈ ℋ )

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1 𝑇 ∈ LinOp
2 cnlnadjlem.2 𝑇 ∈ ContOp
3 cnlnadjlem.3 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇𝑔 ) ·ih 𝑦 ) )
4 cnlnadjlem.4 𝐵 = ( 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) )
5 cnlnadjlem.5 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 )
6 1 2 3 4 cnlnadjlem3 ( 𝑦 ∈ ℋ → 𝐵 ∈ ℋ )
7 5 6 fmpti 𝐹 : ℋ ⟶ ℋ
8 7 ffvelrni ( 𝐴 ∈ ℋ → ( 𝐹𝐴 ) ∈ ℋ )