Metamath Proof Explorer


Theorem cnlnadjlem5

Description: Lemma for cnlnadji . F is an adjoint of T (later, we will show it is unique). (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇𝑔 ) ·ih 𝑦 ) )
cnlnadjlem.4 𝐵 = ( 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) )
cnlnadjlem.5 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 )
Assertion cnlnadjlem5 ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝑇𝐶 ) ·ih 𝐴 ) = ( 𝐶 ·ih ( 𝐹𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1 𝑇 ∈ LinOp
2 cnlnadjlem.2 𝑇 ∈ ContOp
3 cnlnadjlem.3 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇𝑔 ) ·ih 𝑦 ) )
4 cnlnadjlem.4 𝐵 = ( 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) )
5 cnlnadjlem.5 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 )
6 nfcv 𝑦 𝐴
7 nfcv 𝑦
8 nfcv 𝑦 𝑓
9 nfcv 𝑦 ·ih
10 nfmpt1 𝑦 ( 𝑦 ∈ ℋ ↦ 𝐵 )
11 5 10 nfcxfr 𝑦 𝐹
12 11 6 nffv 𝑦 ( 𝐹𝐴 )
13 8 9 12 nfov 𝑦 ( 𝑓 ·ih ( 𝐹𝐴 ) )
14 13 nfeq2 𝑦 ( ( 𝑇𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹𝐴 ) )
15 7 14 nfralw 𝑦𝑓 ∈ ℋ ( ( 𝑇𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹𝐴 ) )
16 oveq2 ( 𝑦 = 𝐴 → ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( ( 𝑇𝑓 ) ·ih 𝐴 ) )
17 fveq2 ( 𝑦 = 𝐴 → ( 𝐹𝑦 ) = ( 𝐹𝐴 ) )
18 17 oveq2d ( 𝑦 = 𝐴 → ( 𝑓 ·ih ( 𝐹𝑦 ) ) = ( 𝑓 ·ih ( 𝐹𝐴 ) ) )
19 16 18 eqeq12d ( 𝑦 = 𝐴 → ( ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹𝑦 ) ) ↔ ( ( 𝑇𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹𝐴 ) ) ) )
20 19 ralbidv ( 𝑦 = 𝐴 → ( ∀ 𝑓 ∈ ℋ ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹𝑦 ) ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹𝐴 ) ) ) )
21 riotaex ( 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) ∈ V
22 4 21 eqeltri 𝐵 ∈ V
23 5 fvmpt2 ( ( 𝑦 ∈ ℋ ∧ 𝐵 ∈ V ) → ( 𝐹𝑦 ) = 𝐵 )
24 22 23 mpan2 ( 𝑦 ∈ ℋ → ( 𝐹𝑦 ) = 𝐵 )
25 fveq2 ( 𝑣 = 𝑓 → ( 𝑇𝑣 ) = ( 𝑇𝑓 ) )
26 25 oveq1d ( 𝑣 = 𝑓 → ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( ( 𝑇𝑓 ) ·ih 𝑦 ) )
27 oveq1 ( 𝑣 = 𝑓 → ( 𝑣 ·ih 𝑤 ) = ( 𝑓 ·ih 𝑤 ) )
28 26 27 eqeq12d ( 𝑣 = 𝑓 → ( ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ) )
29 28 cbvralvw ( ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) )
30 29 a1i ( 𝑤 ∈ ℋ → ( ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ) )
31 1 2 3 cnlnadjlem1 ( 𝑓 ∈ ℋ → ( 𝐺𝑓 ) = ( ( 𝑇𝑓 ) ·ih 𝑦 ) )
32 31 eqeq1d ( 𝑓 ∈ ℋ → ( ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) ↔ ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ) )
33 32 ralbiia ( ∀ 𝑓 ∈ ℋ ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) )
34 30 33 bitr4di ( 𝑤 ∈ ℋ → ( ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) ) )
35 34 riotabiia ( 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) = ( 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) )
36 4 35 eqtri 𝐵 = ( 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) )
37 1 2 3 cnlnadjlem2 ( 𝑦 ∈ ℋ → ( 𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn ) )
38 elin ( 𝐺 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn ) )
39 37 38 sylibr ( 𝑦 ∈ ℋ → 𝐺 ∈ ( LinFn ∩ ContFn ) )
40 riesz4 ( 𝐺 ∈ ( LinFn ∩ ContFn ) → ∃! 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) )
41 riotacl2 ( ∃! 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) → ( 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) ) ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) } )
42 39 40 41 3syl ( 𝑦 ∈ ℋ → ( 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) ) ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) } )
43 36 42 eqeltrid ( 𝑦 ∈ ℋ → 𝐵 ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) } )
44 24 43 eqeltrd ( 𝑦 ∈ ℋ → ( 𝐹𝑦 ) ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) } )
45 oveq2 ( 𝑤 = ( 𝐹𝑦 ) → ( 𝑓 ·ih 𝑤 ) = ( 𝑓 ·ih ( 𝐹𝑦 ) ) )
46 45 eqeq2d ( 𝑤 = ( 𝐹𝑦 ) → ( ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ↔ ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹𝑦 ) ) ) )
47 46 ralbidv ( 𝑤 = ( 𝐹𝑦 ) → ( ∀ 𝑓 ∈ ℋ ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹𝑦 ) ) ) )
48 33 47 syl5bb ( 𝑤 = ( 𝐹𝑦 ) → ( ∀ 𝑓 ∈ ℋ ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹𝑦 ) ) ) )
49 48 elrab ( ( 𝐹𝑦 ) ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) } ↔ ( ( 𝐹𝑦 ) ∈ ℋ ∧ ∀ 𝑓 ∈ ℋ ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹𝑦 ) ) ) )
50 49 simprbi ( ( 𝐹𝑦 ) ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺𝑓 ) = ( 𝑓 ·ih 𝑤 ) } → ∀ 𝑓 ∈ ℋ ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹𝑦 ) ) )
51 44 50 syl ( 𝑦 ∈ ℋ → ∀ 𝑓 ∈ ℋ ( ( 𝑇𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹𝑦 ) ) )
52 6 15 20 51 vtoclgaf ( 𝐴 ∈ ℋ → ∀ 𝑓 ∈ ℋ ( ( 𝑇𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹𝐴 ) ) )
53 fveq2 ( 𝑓 = 𝐶 → ( 𝑇𝑓 ) = ( 𝑇𝐶 ) )
54 53 oveq1d ( 𝑓 = 𝐶 → ( ( 𝑇𝑓 ) ·ih 𝐴 ) = ( ( 𝑇𝐶 ) ·ih 𝐴 ) )
55 oveq1 ( 𝑓 = 𝐶 → ( 𝑓 ·ih ( 𝐹𝐴 ) ) = ( 𝐶 ·ih ( 𝐹𝐴 ) ) )
56 54 55 eqeq12d ( 𝑓 = 𝐶 → ( ( ( 𝑇𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹𝐴 ) ) ↔ ( ( 𝑇𝐶 ) ·ih 𝐴 ) = ( 𝐶 ·ih ( 𝐹𝐴 ) ) ) )
57 56 rspccva ( ( ∀ 𝑓 ∈ ℋ ( ( 𝑇𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹𝐴 ) ) ∧ 𝐶 ∈ ℋ ) → ( ( 𝑇𝐶 ) ·ih 𝐴 ) = ( 𝐶 ·ih ( 𝐹𝐴 ) ) )
58 52 57 sylan ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝑇𝐶 ) ·ih 𝐴 ) = ( 𝐶 ·ih ( 𝐹𝐴 ) ) )