Step |
Hyp |
Ref |
Expression |
1 |
|
cnlnadjlem.1 |
⊢ 𝑇 ∈ LinOp |
2 |
|
cnlnadjlem.2 |
⊢ 𝑇 ∈ ContOp |
3 |
|
cnlnadjlem.3 |
⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) |
4 |
|
cnlnadjlem.4 |
⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) |
5 |
|
cnlnadjlem.5 |
⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) |
6 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
7 |
|
nfcv |
⊢ Ⅎ 𝑦 ℋ |
8 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑓 |
9 |
|
nfcv |
⊢ Ⅎ 𝑦 ·ih |
10 |
|
nfmpt1 |
⊢ Ⅎ 𝑦 ( 𝑦 ∈ ℋ ↦ 𝐵 ) |
11 |
5 10
|
nfcxfr |
⊢ Ⅎ 𝑦 𝐹 |
12 |
11 6
|
nffv |
⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝐴 ) |
13 |
8 9 12
|
nfov |
⊢ Ⅎ 𝑦 ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) |
14 |
13
|
nfeq2 |
⊢ Ⅎ 𝑦 ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) |
15 |
7 14
|
nfralw |
⊢ Ⅎ 𝑦 ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) |
16 |
|
oveq2 |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) ) |
17 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
19 |
16 18
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) ) ) |
21 |
|
riotaex |
⊢ ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) ∈ V |
22 |
4 21
|
eqeltri |
⊢ 𝐵 ∈ V |
23 |
5
|
fvmpt2 |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝐵 ∈ V ) → ( 𝐹 ‘ 𝑦 ) = 𝐵 ) |
24 |
22 23
|
mpan2 |
⊢ ( 𝑦 ∈ ℋ → ( 𝐹 ‘ 𝑦 ) = 𝐵 ) |
25 |
|
fveq2 |
⊢ ( 𝑣 = 𝑓 → ( 𝑇 ‘ 𝑣 ) = ( 𝑇 ‘ 𝑓 ) ) |
26 |
25
|
oveq1d |
⊢ ( 𝑣 = 𝑓 → ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) ) |
27 |
|
oveq1 |
⊢ ( 𝑣 = 𝑓 → ( 𝑣 ·ih 𝑤 ) = ( 𝑓 ·ih 𝑤 ) ) |
28 |
26 27
|
eqeq12d |
⊢ ( 𝑣 = 𝑓 → ( ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ) ) |
29 |
28
|
cbvralvw |
⊢ ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ) |
30 |
29
|
a1i |
⊢ ( 𝑤 ∈ ℋ → ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ) ) |
31 |
1 2 3
|
cnlnadjlem1 |
⊢ ( 𝑓 ∈ ℋ → ( 𝐺 ‘ 𝑓 ) = ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) ) |
32 |
31
|
eqeq1d |
⊢ ( 𝑓 ∈ ℋ → ( ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ↔ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ) ) |
33 |
32
|
ralbiia |
⊢ ( ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ) |
34 |
30 33
|
bitr4di |
⊢ ( 𝑤 ∈ ℋ → ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ) ) |
35 |
34
|
riotabiia |
⊢ ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) = ( ℩ 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ) |
36 |
4 35
|
eqtri |
⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ) |
37 |
1 2 3
|
cnlnadjlem2 |
⊢ ( 𝑦 ∈ ℋ → ( 𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn ) ) |
38 |
|
elin |
⊢ ( 𝐺 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn ) ) |
39 |
37 38
|
sylibr |
⊢ ( 𝑦 ∈ ℋ → 𝐺 ∈ ( LinFn ∩ ContFn ) ) |
40 |
|
riesz4 |
⊢ ( 𝐺 ∈ ( LinFn ∩ ContFn ) → ∃! 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ) |
41 |
|
riotacl2 |
⊢ ( ∃! 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) → ( ℩ 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ) ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) } ) |
42 |
39 40 41
|
3syl |
⊢ ( 𝑦 ∈ ℋ → ( ℩ 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ) ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) } ) |
43 |
36 42
|
eqeltrid |
⊢ ( 𝑦 ∈ ℋ → 𝐵 ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) } ) |
44 |
24 43
|
eqeltrd |
⊢ ( 𝑦 ∈ ℋ → ( 𝐹 ‘ 𝑦 ) ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) } ) |
45 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑦 ) → ( 𝑓 ·ih 𝑤 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ) |
46 |
45
|
eqeq2d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑦 ) → ( ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ↔ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ) ) |
47 |
46
|
ralbidv |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑦 ) → ( ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ) ) |
48 |
33 47
|
syl5bb |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑦 ) → ( ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ) ) |
49 |
48
|
elrab |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) } ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℋ ∧ ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ) ) |
50 |
49
|
simprbi |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) } → ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ) |
51 |
44 50
|
syl |
⊢ ( 𝑦 ∈ ℋ → ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ) |
52 |
6 15 20 51
|
vtoclgaf |
⊢ ( 𝐴 ∈ ℋ → ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
53 |
|
fveq2 |
⊢ ( 𝑓 = 𝐶 → ( 𝑇 ‘ 𝑓 ) = ( 𝑇 ‘ 𝐶 ) ) |
54 |
53
|
oveq1d |
⊢ ( 𝑓 = 𝐶 → ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( ( 𝑇 ‘ 𝐶 ) ·ih 𝐴 ) ) |
55 |
|
oveq1 |
⊢ ( 𝑓 = 𝐶 → ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) = ( 𝐶 ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
56 |
54 55
|
eqeq12d |
⊢ ( 𝑓 = 𝐶 → ( ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) ↔ ( ( 𝑇 ‘ 𝐶 ) ·ih 𝐴 ) = ( 𝐶 ·ih ( 𝐹 ‘ 𝐴 ) ) ) ) |
57 |
56
|
rspccva |
⊢ ( ( ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) ∧ 𝐶 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐶 ) ·ih 𝐴 ) = ( 𝐶 ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
58 |
52 57
|
sylan |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐶 ) ·ih 𝐴 ) = ( 𝐶 ·ih ( 𝐹 ‘ 𝐴 ) ) ) |