| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnlnadjlem.1 |
⊢ 𝑇 ∈ LinOp |
| 2 |
|
cnlnadjlem.2 |
⊢ 𝑇 ∈ ContOp |
| 3 |
|
cnlnadjlem.3 |
⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) |
| 4 |
|
cnlnadjlem.4 |
⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) |
| 5 |
|
cnlnadjlem.5 |
⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) |
| 6 |
1 2 3 4
|
cnlnadjlem3 |
⊢ ( 𝑦 ∈ ℋ → 𝐵 ∈ ℋ ) |
| 7 |
5 6
|
fmpti |
⊢ 𝐹 : ℋ ⟶ ℋ |
| 8 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 9 |
8
|
ffvelcdmi |
⊢ ( 𝑡 ∈ ℋ → ( 𝑇 ‘ 𝑡 ) ∈ ℋ ) |
| 10 |
9
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑇 ‘ 𝑡 ) ∈ ℋ ) |
| 11 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑓 ) ∈ ℋ ) |
| 12 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑓 ) ∈ ℋ ) |
| 13 |
|
simplr |
⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → 𝑧 ∈ ℋ ) |
| 14 |
|
his7 |
⊢ ( ( ( 𝑇 ‘ 𝑡 ) ∈ ℋ ∧ ( 𝑥 ·ℎ 𝑓 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) + ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑧 ) ) ) |
| 15 |
10 12 13 14
|
syl3anc |
⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) + ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑧 ) ) ) |
| 16 |
|
hvaddcl |
⊢ ( ( ( 𝑥 ·ℎ 𝑓 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 17 |
11 16
|
sylan |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 18 |
1 2 3 4 5
|
cnlnadjlem5 |
⊢ ( ( ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ∈ ℋ ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( 𝑡 ·ih ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ) ) |
| 19 |
17 18
|
sylan |
⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( 𝑡 ·ih ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ) ) |
| 20 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → 𝑥 ∈ ℂ ) |
| 21 |
9
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑇 ‘ 𝑡 ) ∈ ℋ ) |
| 22 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → 𝑓 ∈ ℋ ) |
| 23 |
|
his5 |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑡 ) ∈ ℋ ∧ 𝑓 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) = ( ( ∗ ‘ 𝑥 ) · ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑓 ) ) ) |
| 24 |
20 21 22 23
|
syl3anc |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) = ( ( ∗ ‘ 𝑥 ) · ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑓 ) ) ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → 𝑡 ∈ ℋ ) |
| 26 |
1 2 3 4 5
|
cnlnadjlem4 |
⊢ ( 𝑓 ∈ ℋ → ( 𝐹 ‘ 𝑓 ) ∈ ℋ ) |
| 27 |
26
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝐹 ‘ 𝑓 ) ∈ ℋ ) |
| 28 |
|
his5 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑡 ∈ ℋ ∧ ( 𝐹 ‘ 𝑓 ) ∈ ℋ ) → ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) = ( ( ∗ ‘ 𝑥 ) · ( 𝑡 ·ih ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 29 |
20 25 27 28
|
syl3anc |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) = ( ( ∗ ‘ 𝑥 ) · ( 𝑡 ·ih ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 30 |
1 2 3 4 5
|
cnlnadjlem5 |
⊢ ( ( 𝑓 ∈ ℋ ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑓 ) = ( 𝑡 ·ih ( 𝐹 ‘ 𝑓 ) ) ) |
| 31 |
30
|
adantll |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑓 ) = ( 𝑡 ·ih ( 𝐹 ‘ 𝑓 ) ) ) |
| 32 |
31
|
oveq2d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( ∗ ‘ 𝑥 ) · ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑓 ) ) = ( ( ∗ ‘ 𝑥 ) · ( 𝑡 ·ih ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 33 |
29 32
|
eqtr4d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) = ( ( ∗ ‘ 𝑥 ) · ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑓 ) ) ) |
| 34 |
24 33
|
eqtr4d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) = ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 35 |
34
|
adantlr |
⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) = ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 36 |
1 2 3 4 5
|
cnlnadjlem5 |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑧 ) = ( 𝑡 ·ih ( 𝐹 ‘ 𝑧 ) ) ) |
| 37 |
36
|
adantll |
⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑧 ) = ( 𝑡 ·ih ( 𝐹 ‘ 𝑧 ) ) ) |
| 38 |
35 37
|
oveq12d |
⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) + ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑧 ) ) = ( ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) + ( 𝑡 ·ih ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 39 |
|
simpr |
⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → 𝑡 ∈ ℋ ) |
| 40 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝐹 ‘ 𝑓 ) ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ∈ ℋ ) |
| 41 |
26 40
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ∈ ℋ ) |
| 42 |
41
|
ad2antrr |
⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ∈ ℋ ) |
| 43 |
1 2 3 4 5
|
cnlnadjlem4 |
⊢ ( 𝑧 ∈ ℋ → ( 𝐹 ‘ 𝑧 ) ∈ ℋ ) |
| 44 |
43
|
ad2antlr |
⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℋ ) |
| 45 |
|
his7 |
⊢ ( ( 𝑡 ∈ ℋ ∧ ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ∈ ℋ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℋ ) → ( 𝑡 ·ih ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) + ( 𝑡 ·ih ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 46 |
39 42 44 45
|
syl3anc |
⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑡 ·ih ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) + ( 𝑡 ·ih ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 47 |
38 46
|
eqtr4d |
⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) + ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑧 ) ) = ( 𝑡 ·ih ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 48 |
15 19 47
|
3eqtr3d |
⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑡 ·ih ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ) = ( 𝑡 ·ih ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 49 |
48
|
ralrimiva |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ∀ 𝑡 ∈ ℋ ( 𝑡 ·ih ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ) = ( 𝑡 ·ih ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 50 |
1 2 3 4 5
|
cnlnadjlem4 |
⊢ ( ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ∈ ℋ → ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ∈ ℋ ) |
| 51 |
17 50
|
syl |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ∈ ℋ ) |
| 52 |
|
hvaddcl |
⊢ ( ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ∈ ℋ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ∈ ℋ ) |
| 53 |
41 43 52
|
syl2an |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ∈ ℋ ) |
| 54 |
|
hial2eq2 |
⊢ ( ( ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ∈ ℋ ∧ ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ∈ ℋ ) → ( ∀ 𝑡 ∈ ℋ ( 𝑡 ·ih ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ) = ( 𝑡 ·ih ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 55 |
51 53 54
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ∀ 𝑡 ∈ ℋ ( 𝑡 ·ih ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ) = ( 𝑡 ·ih ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 56 |
49 55
|
mpbid |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) |
| 57 |
56
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) → ∀ 𝑧 ∈ ℋ ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) |
| 58 |
57
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑓 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) |
| 59 |
|
ellnop |
⊢ ( 𝐹 ∈ LinOp ↔ ( 𝐹 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑓 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 60 |
7 58 59
|
mpbir2an |
⊢ 𝐹 ∈ LinOp |