| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnlnadjlem.1 |
⊢ 𝑇 ∈ LinOp |
| 2 |
|
cnlnadjlem.2 |
⊢ 𝑇 ∈ ContOp |
| 3 |
|
cnlnadjlem.3 |
⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) |
| 4 |
|
cnlnadjlem.4 |
⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) |
| 5 |
|
cnlnadjlem.5 |
⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) |
| 6 |
|
breq1 |
⊢ ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) = 0 → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ↔ 0 ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
| 7 |
1 2 3 4 5
|
cnlnadjlem4 |
⊢ ( 𝐴 ∈ ℋ → ( 𝐹 ‘ 𝐴 ) ∈ ℋ ) |
| 8 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 9 |
8
|
ffvelcdmi |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℋ ) |
| 10 |
7 9
|
syl |
⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℋ ) |
| 11 |
|
hicl |
⊢ ( ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ∈ ℂ ) |
| 12 |
10 11
|
mpancom |
⊢ ( 𝐴 ∈ ℋ → ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ∈ ℂ ) |
| 13 |
12
|
abscld |
⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ) ∈ ℝ ) |
| 14 |
|
normcl |
⊢ ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 15 |
10 14
|
syl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 16 |
|
normcl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
| 17 |
15 16
|
remulcld |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
| 18 |
1 2
|
nmcopexi |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 19 |
|
normcl |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
| 20 |
7 19
|
syl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
| 21 |
|
remulcl |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 22 |
18 20 21
|
sylancr |
⊢ ( 𝐴 ∈ ℋ → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 23 |
22 16
|
remulcld |
⊢ ( 𝐴 ∈ ℋ → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
| 24 |
|
bcs |
⊢ ( ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( abs ‘ ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ) ≤ ( ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 25 |
10 24
|
mpancom |
⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ) ≤ ( ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 26 |
|
normge0 |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐴 ) ) |
| 27 |
1 2
|
nmcoplbi |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 28 |
7 27
|
syl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 29 |
15 22 16 26 28
|
lemul1ad |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 30 |
13 17 23 25 29
|
letrd |
⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 31 |
1 2 3 4 5
|
cnlnadjlem5 |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℋ ) → ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) = ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| 32 |
7 31
|
mpdan |
⊢ ( 𝐴 ∈ ℋ → ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) = ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| 33 |
32
|
fveq2d |
⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 34 |
|
hiidrcl |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
| 35 |
7 34
|
syl |
⊢ ( 𝐴 ∈ ℋ → ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
| 36 |
|
hiidge0 |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| 37 |
7 36
|
syl |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| 38 |
35 37
|
absidd |
⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) = ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| 39 |
|
normsq |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| 40 |
7 39
|
syl |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| 41 |
20
|
recnd |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
| 42 |
41
|
sqvald |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ↑ 2 ) = ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 43 |
40 42
|
eqtr3d |
⊢ ( 𝐴 ∈ ℋ → ( ( 𝐹 ‘ 𝐴 ) ·ih ( 𝐹 ‘ 𝐴 ) ) = ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 44 |
33 38 43
|
3eqtrd |
⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( ( 𝑇 ‘ ( 𝐹 ‘ 𝐴 ) ) ·ih 𝐴 ) ) = ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 45 |
16
|
recnd |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℂ ) |
| 46 |
18
|
recni |
⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
| 47 |
|
mul32 |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ∧ ( normℎ ‘ 𝐴 ) ∈ ℂ ) → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) = ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 48 |
46 47
|
mp3an1 |
⊢ ( ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ∧ ( normℎ ‘ 𝐴 ) ∈ ℂ ) → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) = ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 49 |
41 45 48
|
syl2anc |
⊢ ( 𝐴 ∈ ℋ → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) = ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 50 |
30 44 49
|
3brtr3d |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 52 |
20
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) → ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
| 53 |
|
remulcl |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normℎ ‘ 𝐴 ) ∈ ℝ ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
| 54 |
18 16 53
|
sylancr |
⊢ ( 𝐴 ∈ ℋ → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
| 56 |
|
normge0 |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) |
| 57 |
|
0re |
⊢ 0 ∈ ℝ |
| 58 |
|
leltne |
⊢ ( ( 0 ∈ ℝ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) → ( 0 < ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ↔ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) ) |
| 59 |
57 58
|
mp3an1 |
⊢ ( ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) → ( 0 < ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ↔ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) ) |
| 60 |
19 56 59
|
syl2anc |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ → ( 0 < ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ↔ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) ) |
| 61 |
60
|
biimpar |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) → 0 < ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) |
| 62 |
7 61
|
sylan |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) → 0 < ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) |
| 63 |
|
lemul1 |
⊢ ( ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ∧ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ∈ ℝ ∧ ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 < ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ↔ ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) ) |
| 64 |
52 55 52 62 63
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) → ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ↔ ( ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) ) |
| 65 |
51 64
|
mpbird |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ 0 ) → ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 66 |
|
nmopge0 |
⊢ ( 𝑇 : ℋ ⟶ ℋ → 0 ≤ ( normop ‘ 𝑇 ) ) |
| 67 |
8 66
|
ax-mp |
⊢ 0 ≤ ( normop ‘ 𝑇 ) |
| 68 |
|
mulge0 |
⊢ ( ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ 0 ≤ ( normop ‘ 𝑇 ) ) ∧ ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐴 ) ) ) → 0 ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 69 |
18 67 68
|
mpanl12 |
⊢ ( ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 70 |
16 26 69
|
syl2anc |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 71 |
6 65 70
|
pm2.61ne |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |