Step |
Hyp |
Ref |
Expression |
1 |
|
cnlnadjlem.1 |
⊢ 𝑇 ∈ LinOp |
2 |
|
cnlnadjlem.2 |
⊢ 𝑇 ∈ ContOp |
3 |
|
cnlnadjlem.3 |
⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) |
4 |
|
cnlnadjlem.4 |
⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) |
5 |
|
cnlnadjlem.5 |
⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) |
6 |
1 2
|
nmcopexi |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
7 |
1 2 3 4 5
|
cnlnadjlem7 |
⊢ ( 𝑧 ∈ ℋ → ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) |
8 |
7
|
rgen |
⊢ ∀ 𝑧 ∈ ℋ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑥 = ( normop ‘ 𝑇 ) → ( 𝑥 · ( normℎ ‘ 𝑧 ) ) = ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) |
10 |
9
|
breq2d |
⊢ ( 𝑥 = ( normop ‘ 𝑇 ) → ( ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ↔ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑥 = ( normop ‘ 𝑇 ) → ( ∀ 𝑧 ∈ ℋ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℋ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) ) |
12 |
11
|
rspcev |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ∀ 𝑧 ∈ ℋ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ℋ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ) |
13 |
6 8 12
|
mp2an |
⊢ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ℋ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) |
14 |
1 2 3 4 5
|
cnlnadjlem6 |
⊢ 𝐹 ∈ LinOp |
15 |
14
|
lnopconi |
⊢ ( 𝐹 ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ℋ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ) |
16 |
13 15
|
mpbir |
⊢ 𝐹 ∈ ContOp |