Step |
Hyp |
Ref |
Expression |
1 |
|
cnlnadjlem.1 |
⊢ 𝑇 ∈ LinOp |
2 |
|
cnlnadjlem.2 |
⊢ 𝑇 ∈ ContOp |
3 |
|
cnlnadjlem.3 |
⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) |
4 |
|
cnlnadjlem.4 |
⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) |
5 |
|
cnlnadjlem.5 |
⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) |
6 |
1 2 3 4 5
|
cnlnadjlem6 |
⊢ 𝐹 ∈ LinOp |
7 |
1 2 3 4 5
|
cnlnadjlem8 |
⊢ 𝐹 ∈ ContOp |
8 |
|
elin |
⊢ ( 𝐹 ∈ ( LinOp ∩ ContOp ) ↔ ( 𝐹 ∈ LinOp ∧ 𝐹 ∈ ContOp ) ) |
9 |
6 7 8
|
mpbir2an |
⊢ 𝐹 ∈ ( LinOp ∩ ContOp ) |
10 |
1 2 3 4 5
|
cnlnadjlem5 |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝐹 ‘ 𝑧 ) ) ) |
11 |
10
|
ancoms |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝐹 ‘ 𝑧 ) ) ) |
12 |
11
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝐹 ‘ 𝑧 ) ) |
13 |
|
fveq1 |
⊢ ( 𝑡 = 𝐹 → ( 𝑡 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑡 = 𝐹 → ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) = ( 𝑥 ·ih ( 𝐹 ‘ 𝑧 ) ) ) |
15 |
14
|
eqeq2d |
⊢ ( 𝑡 = 𝐹 → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ↔ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝐹 ‘ 𝑧 ) ) ) ) |
16 |
15
|
2ralbidv |
⊢ ( 𝑡 = 𝐹 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝐹 ‘ 𝑧 ) ) ) ) |
17 |
16
|
rspcev |
⊢ ( ( 𝐹 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝐹 ‘ 𝑧 ) ) ) → ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) |
18 |
9 12 17
|
mp2an |
⊢ ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) |