| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnlnadj | ⊢ ( 𝑦  ∈  ( LinOp  ∩  ContOp )  →  ∃ 𝑡  ∈  ( LinOp  ∩  ContOp ) ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) ) ) | 
						
							| 2 |  | df-rex | ⊢ ( ∃ 𝑡  ∈  ( LinOp  ∩  ContOp ) ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) )  ↔  ∃ 𝑡 ( 𝑡  ∈  ( LinOp  ∩  ContOp )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) ) ) ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( 𝑦  ∈  ( LinOp  ∩  ContOp )  →  ∃ 𝑡 ( 𝑡  ∈  ( LinOp  ∩  ContOp )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) ) ) ) | 
						
							| 4 |  | inss1 | ⊢ ( LinOp  ∩  ContOp )  ⊆  LinOp | 
						
							| 5 | 4 | sseli | ⊢ ( 𝑦  ∈  ( LinOp  ∩  ContOp )  →  𝑦  ∈  LinOp ) | 
						
							| 6 |  | lnopf | ⊢ ( 𝑦  ∈  LinOp  →  𝑦 :  ℋ ⟶  ℋ ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑦  ∈  ( LinOp  ∩  ContOp )  →  𝑦 :  ℋ ⟶  ℋ ) | 
						
							| 8 | 7 | a1d | ⊢ ( 𝑦  ∈  ( LinOp  ∩  ContOp )  →  ( ( 𝑡  ∈  ( LinOp  ∩  ContOp )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) ) )  →  𝑦 :  ℋ ⟶  ℋ ) ) | 
						
							| 9 | 4 | sseli | ⊢ ( 𝑡  ∈  ( LinOp  ∩  ContOp )  →  𝑡  ∈  LinOp ) | 
						
							| 10 |  | lnopf | ⊢ ( 𝑡  ∈  LinOp  →  𝑡 :  ℋ ⟶  ℋ ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑡  ∈  ( LinOp  ∩  ContOp )  →  𝑡 :  ℋ ⟶  ℋ ) | 
						
							| 12 | 11 | a1i | ⊢ ( 𝑦  ∈  ( LinOp  ∩  ContOp )  →  ( 𝑡  ∈  ( LinOp  ∩  ContOp )  →  𝑡 :  ℋ ⟶  ℋ ) ) | 
						
							| 13 | 12 | adantrd | ⊢ ( 𝑦  ∈  ( LinOp  ∩  ContOp )  →  ( ( 𝑡  ∈  ( LinOp  ∩  ContOp )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) ) )  →  𝑡 :  ℋ ⟶  ℋ ) ) | 
						
							| 14 |  | eqcom | ⊢ ( ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) )  ↔  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) )  =  ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 ) ) | 
						
							| 15 | 14 | biimpi | ⊢ ( ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) )  →  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) )  =  ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 ) ) | 
						
							| 16 | 15 | 2ralimi | ⊢ ( ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) )  →  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) )  =  ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 ) ) | 
						
							| 17 |  | adjsym | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑦 :  ℋ ⟶  ℋ )  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) )  =  ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑧 ) ) ) | 
						
							| 18 | 11 7 17 | syl2anr | ⊢ ( ( 𝑦  ∈  ( LinOp  ∩  ContOp )  ∧  𝑡  ∈  ( LinOp  ∩  ContOp ) )  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) )  =  ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑧 ) ) ) | 
						
							| 19 | 16 18 | imbitrid | ⊢ ( ( 𝑦  ∈  ( LinOp  ∩  ContOp )  ∧  𝑡  ∈  ( LinOp  ∩  ContOp ) )  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) )  →  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑧 ) ) ) | 
						
							| 20 | 19 | expimpd | ⊢ ( 𝑦  ∈  ( LinOp  ∩  ContOp )  →  ( ( 𝑡  ∈  ( LinOp  ∩  ContOp )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) ) )  →  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑧 ) ) ) | 
						
							| 21 | 8 13 20 | 3jcad | ⊢ ( 𝑦  ∈  ( LinOp  ∩  ContOp )  →  ( ( 𝑡  ∈  ( LinOp  ∩  ContOp )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) ) )  →  ( 𝑦 :  ℋ ⟶  ℋ  ∧  𝑡 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑧 ) ) ) ) | 
						
							| 22 |  | dfadj2 | ⊢ adjℎ  =  { 〈 𝑢 ,  𝑣 〉  ∣  ( 𝑢 :  ℋ ⟶  ℋ  ∧  𝑣 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑢 ‘ 𝑧 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑧 ) ) } | 
						
							| 23 | 22 | eleq2i | ⊢ ( 〈 𝑦 ,  𝑡 〉  ∈  adjℎ  ↔  〈 𝑦 ,  𝑡 〉  ∈  { 〈 𝑢 ,  𝑣 〉  ∣  ( 𝑢 :  ℋ ⟶  ℋ  ∧  𝑣 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑢 ‘ 𝑧 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑧 ) ) } ) | 
						
							| 24 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 25 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 26 |  | feq1 | ⊢ ( 𝑢  =  𝑦  →  ( 𝑢 :  ℋ ⟶  ℋ  ↔  𝑦 :  ℋ ⟶  ℋ ) ) | 
						
							| 27 |  | fveq1 | ⊢ ( 𝑢  =  𝑦  →  ( 𝑢 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑧 ) ) | 
						
							| 28 | 27 | oveq2d | ⊢ ( 𝑢  =  𝑦  →  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑧 ) )  =  ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) ) ) | 
						
							| 29 | 28 | eqeq1d | ⊢ ( 𝑢  =  𝑦  →  ( ( 𝑥  ·ih  ( 𝑢 ‘ 𝑧 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑧 )  ↔  ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑧 ) ) ) | 
						
							| 30 | 29 | 2ralbidv | ⊢ ( 𝑢  =  𝑦  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑢 ‘ 𝑧 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑧 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑧 ) ) ) | 
						
							| 31 | 26 30 | 3anbi13d | ⊢ ( 𝑢  =  𝑦  →  ( ( 𝑢 :  ℋ ⟶  ℋ  ∧  𝑣 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑢 ‘ 𝑧 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑧 ) )  ↔  ( 𝑦 :  ℋ ⟶  ℋ  ∧  𝑣 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑧 ) ) ) ) | 
						
							| 32 |  | feq1 | ⊢ ( 𝑣  =  𝑡  →  ( 𝑣 :  ℋ ⟶  ℋ  ↔  𝑡 :  ℋ ⟶  ℋ ) ) | 
						
							| 33 |  | fveq1 | ⊢ ( 𝑣  =  𝑡  →  ( 𝑣 ‘ 𝑥 )  =  ( 𝑡 ‘ 𝑥 ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( 𝑣  =  𝑡  →  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑧 )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑧 ) ) | 
						
							| 35 | 34 | eqeq2d | ⊢ ( 𝑣  =  𝑡  →  ( ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑧 )  ↔  ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑧 ) ) ) | 
						
							| 36 | 35 | 2ralbidv | ⊢ ( 𝑣  =  𝑡  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑧 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑧 ) ) ) | 
						
							| 37 | 32 36 | 3anbi23d | ⊢ ( 𝑣  =  𝑡  →  ( ( 𝑦 :  ℋ ⟶  ℋ  ∧  𝑣 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑧 ) )  ↔  ( 𝑦 :  ℋ ⟶  ℋ  ∧  𝑡 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑧 ) ) ) ) | 
						
							| 38 | 24 25 31 37 | opelopab | ⊢ ( 〈 𝑦 ,  𝑡 〉  ∈  { 〈 𝑢 ,  𝑣 〉  ∣  ( 𝑢 :  ℋ ⟶  ℋ  ∧  𝑣 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑢 ‘ 𝑧 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑧 ) ) }  ↔  ( 𝑦 :  ℋ ⟶  ℋ  ∧  𝑡 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑧 ) ) ) | 
						
							| 39 | 23 38 | bitr2i | ⊢ ( ( 𝑦 :  ℋ ⟶  ℋ  ∧  𝑡 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑥  ·ih  ( 𝑦 ‘ 𝑧 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑧 ) )  ↔  〈 𝑦 ,  𝑡 〉  ∈  adjℎ ) | 
						
							| 40 | 21 39 | imbitrdi | ⊢ ( 𝑦  ∈  ( LinOp  ∩  ContOp )  →  ( ( 𝑡  ∈  ( LinOp  ∩  ContOp )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) ) )  →  〈 𝑦 ,  𝑡 〉  ∈  adjℎ ) ) | 
						
							| 41 | 40 | eximdv | ⊢ ( 𝑦  ∈  ( LinOp  ∩  ContOp )  →  ( ∃ 𝑡 ( 𝑡  ∈  ( LinOp  ∩  ContOp )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( 𝑦 ‘ 𝑥 )  ·ih  𝑧 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑧 ) ) )  →  ∃ 𝑡 〈 𝑦 ,  𝑡 〉  ∈  adjℎ ) ) | 
						
							| 42 | 3 41 | mpd | ⊢ ( 𝑦  ∈  ( LinOp  ∩  ContOp )  →  ∃ 𝑡 〈 𝑦 ,  𝑡 〉  ∈  adjℎ ) | 
						
							| 43 | 24 | eldm2 | ⊢ ( 𝑦  ∈  dom  adjℎ  ↔  ∃ 𝑡 〈 𝑦 ,  𝑡 〉  ∈  adjℎ ) | 
						
							| 44 | 42 43 | sylibr | ⊢ ( 𝑦  ∈  ( LinOp  ∩  ContOp )  →  𝑦  ∈  dom  adjℎ ) | 
						
							| 45 | 44 | ssriv | ⊢ ( LinOp  ∩  ContOp )  ⊆  dom  adjℎ |