Metamath Proof Explorer


Theorem cnlnssadj

Description: Every continuous linear Hilbert space operator has an adjoint. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion cnlnssadj ( LinOp ∩ ContOp ) ⊆ dom adj

Proof

Step Hyp Ref Expression
1 cnlnadj ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡𝑧 ) ) )
2 df-rex ( ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡𝑧 ) ) ↔ ∃ 𝑡 ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡𝑧 ) ) ) )
3 1 2 sylib ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ∃ 𝑡 ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡𝑧 ) ) ) )
4 inss1 ( LinOp ∩ ContOp ) ⊆ LinOp
5 4 sseli ( 𝑦 ∈ ( LinOp ∩ ContOp ) → 𝑦 ∈ LinOp )
6 lnopf ( 𝑦 ∈ LinOp → 𝑦 : ℋ ⟶ ℋ )
7 5 6 syl ( 𝑦 ∈ ( LinOp ∩ ContOp ) → 𝑦 : ℋ ⟶ ℋ )
8 7 a1d ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡𝑧 ) ) ) → 𝑦 : ℋ ⟶ ℋ ) )
9 4 sseli ( 𝑡 ∈ ( LinOp ∩ ContOp ) → 𝑡 ∈ LinOp )
10 lnopf ( 𝑡 ∈ LinOp → 𝑡 : ℋ ⟶ ℋ )
11 9 10 syl ( 𝑡 ∈ ( LinOp ∩ ContOp ) → 𝑡 : ℋ ⟶ ℋ )
12 11 a1i ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( 𝑡 ∈ ( LinOp ∩ ContOp ) → 𝑡 : ℋ ⟶ ℋ ) )
13 12 adantrd ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡𝑧 ) ) ) → 𝑡 : ℋ ⟶ ℋ ) )
14 eqcom ( ( ( 𝑦𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡𝑧 ) ) ↔ ( 𝑥 ·ih ( 𝑡𝑧 ) ) = ( ( 𝑦𝑥 ) ·ih 𝑧 ) )
15 14 biimpi ( ( ( 𝑦𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡𝑧 ) ) → ( 𝑥 ·ih ( 𝑡𝑧 ) ) = ( ( 𝑦𝑥 ) ·ih 𝑧 ) )
16 15 2ralimi ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡𝑧 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑧 ) ) = ( ( 𝑦𝑥 ) ·ih 𝑧 ) )
17 adjsym ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑦 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑧 ) ) = ( ( 𝑦𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑧 ) ) )
18 11 7 17 syl2anr ( ( 𝑦 ∈ ( LinOp ∩ ContOp ) ∧ 𝑡 ∈ ( LinOp ∩ ContOp ) ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑧 ) ) = ( ( 𝑦𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑧 ) ) )
19 16 18 syl5ib ( ( 𝑦 ∈ ( LinOp ∩ ContOp ) ∧ 𝑡 ∈ ( LinOp ∩ ContOp ) ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡𝑧 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑧 ) ) )
20 19 expimpd ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡𝑧 ) ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑧 ) ) )
21 8 13 20 3jcad ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡𝑧 ) ) ) → ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑧 ) ) ) )
22 dfadj2 adj = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑢𝑧 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑧 ) ) }
23 22 eleq2i ( ⟨ 𝑦 , 𝑡 ⟩ ∈ adj ↔ ⟨ 𝑦 , 𝑡 ⟩ ∈ { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑢𝑧 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑧 ) ) } )
24 vex 𝑦 ∈ V
25 vex 𝑡 ∈ V
26 feq1 ( 𝑢 = 𝑦 → ( 𝑢 : ℋ ⟶ ℋ ↔ 𝑦 : ℋ ⟶ ℋ ) )
27 fveq1 ( 𝑢 = 𝑦 → ( 𝑢𝑧 ) = ( 𝑦𝑧 ) )
28 27 oveq2d ( 𝑢 = 𝑦 → ( 𝑥 ·ih ( 𝑢𝑧 ) ) = ( 𝑥 ·ih ( 𝑦𝑧 ) ) )
29 28 eqeq1d ( 𝑢 = 𝑦 → ( ( 𝑥 ·ih ( 𝑢𝑧 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑧 ) ↔ ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑧 ) ) )
30 29 2ralbidv ( 𝑢 = 𝑦 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑢𝑧 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑧 ) ) )
31 26 30 3anbi13d ( 𝑢 = 𝑦 → ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑢𝑧 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑧 ) ) ↔ ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑧 ) ) ) )
32 feq1 ( 𝑣 = 𝑡 → ( 𝑣 : ℋ ⟶ ℋ ↔ 𝑡 : ℋ ⟶ ℋ ) )
33 fveq1 ( 𝑣 = 𝑡 → ( 𝑣𝑥 ) = ( 𝑡𝑥 ) )
34 33 oveq1d ( 𝑣 = 𝑡 → ( ( 𝑣𝑥 ) ·ih 𝑧 ) = ( ( 𝑡𝑥 ) ·ih 𝑧 ) )
35 34 eqeq2d ( 𝑣 = 𝑡 → ( ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑧 ) ↔ ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑧 ) ) )
36 35 2ralbidv ( 𝑣 = 𝑡 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑧 ) ) )
37 32 36 3anbi23d ( 𝑣 = 𝑡 → ( ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑧 ) ) ↔ ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑧 ) ) ) )
38 24 25 31 37 opelopab ( ⟨ 𝑦 , 𝑡 ⟩ ∈ { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑢𝑧 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑧 ) ) } ↔ ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑧 ) ) )
39 23 38 bitr2i ( ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦𝑧 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑧 ) ) ↔ ⟨ 𝑦 , 𝑡 ⟩ ∈ adj )
40 21 39 syl6ib ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡𝑧 ) ) ) → ⟨ 𝑦 , 𝑡 ⟩ ∈ adj ) )
41 40 eximdv ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ∃ 𝑡 ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡𝑧 ) ) ) → ∃ 𝑡𝑦 , 𝑡 ⟩ ∈ adj ) )
42 3 41 mpd ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ∃ 𝑡𝑦 , 𝑡 ⟩ ∈ adj )
43 24 eldm2 ( 𝑦 ∈ dom adj ↔ ∃ 𝑡𝑦 , 𝑡 ⟩ ∈ adj )
44 42 43 sylibr ( 𝑦 ∈ ( LinOp ∩ ContOp ) → 𝑦 ∈ dom adj )
45 44 ssriv ( LinOp ∩ ContOp ) ⊆ dom adj