Step |
Hyp |
Ref |
Expression |
1 |
|
cnlnadj |
⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) |
2 |
|
df-rex |
⊢ ( ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ↔ ∃ 𝑡 ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) ) |
3 |
1 2
|
sylib |
⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ∃ 𝑡 ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) ) |
4 |
|
inss1 |
⊢ ( LinOp ∩ ContOp ) ⊆ LinOp |
5 |
4
|
sseli |
⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → 𝑦 ∈ LinOp ) |
6 |
|
lnopf |
⊢ ( 𝑦 ∈ LinOp → 𝑦 : ℋ ⟶ ℋ ) |
7 |
5 6
|
syl |
⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → 𝑦 : ℋ ⟶ ℋ ) |
8 |
7
|
a1d |
⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) → 𝑦 : ℋ ⟶ ℋ ) ) |
9 |
4
|
sseli |
⊢ ( 𝑡 ∈ ( LinOp ∩ ContOp ) → 𝑡 ∈ LinOp ) |
10 |
|
lnopf |
⊢ ( 𝑡 ∈ LinOp → 𝑡 : ℋ ⟶ ℋ ) |
11 |
9 10
|
syl |
⊢ ( 𝑡 ∈ ( LinOp ∩ ContOp ) → 𝑡 : ℋ ⟶ ℋ ) |
12 |
11
|
a1i |
⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( 𝑡 ∈ ( LinOp ∩ ContOp ) → 𝑡 : ℋ ⟶ ℋ ) ) |
13 |
12
|
adantrd |
⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) → 𝑡 : ℋ ⟶ ℋ ) ) |
14 |
|
eqcom |
⊢ ( ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ↔ ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) = ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) ) |
15 |
14
|
biimpi |
⊢ ( ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) → ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) = ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) ) |
16 |
15
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) = ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) ) |
17 |
|
adjsym |
⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑦 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) = ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
18 |
11 7 17
|
syl2anr |
⊢ ( ( 𝑦 ∈ ( LinOp ∩ ContOp ) ∧ 𝑡 ∈ ( LinOp ∩ ContOp ) ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) = ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
19 |
16 18
|
syl5ib |
⊢ ( ( 𝑦 ∈ ( LinOp ∩ ContOp ) ∧ 𝑡 ∈ ( LinOp ∩ ContOp ) ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
20 |
19
|
expimpd |
⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
21 |
8 13 20
|
3jcad |
⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) → ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) ) |
22 |
|
dfadj2 |
⊢ adjℎ = { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) } |
23 |
22
|
eleq2i |
⊢ ( 〈 𝑦 , 𝑡 〉 ∈ adjℎ ↔ 〈 𝑦 , 𝑡 〉 ∈ { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) } ) |
24 |
|
vex |
⊢ 𝑦 ∈ V |
25 |
|
vex |
⊢ 𝑡 ∈ V |
26 |
|
feq1 |
⊢ ( 𝑢 = 𝑦 → ( 𝑢 : ℋ ⟶ ℋ ↔ 𝑦 : ℋ ⟶ ℋ ) ) |
27 |
|
fveq1 |
⊢ ( 𝑢 = 𝑦 → ( 𝑢 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝑢 = 𝑦 → ( 𝑥 ·ih ( 𝑢 ‘ 𝑧 ) ) = ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) ) |
29 |
28
|
eqeq1d |
⊢ ( 𝑢 = 𝑦 → ( ( 𝑥 ·ih ( 𝑢 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
30 |
29
|
2ralbidv |
⊢ ( 𝑢 = 𝑦 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
31 |
26 30
|
3anbi13d |
⊢ ( 𝑢 = 𝑦 → ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) ↔ ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) ) ) |
32 |
|
feq1 |
⊢ ( 𝑣 = 𝑡 → ( 𝑣 : ℋ ⟶ ℋ ↔ 𝑡 : ℋ ⟶ ℋ ) ) |
33 |
|
fveq1 |
⊢ ( 𝑣 = 𝑡 → ( 𝑣 ‘ 𝑥 ) = ( 𝑡 ‘ 𝑥 ) ) |
34 |
33
|
oveq1d |
⊢ ( 𝑣 = 𝑡 → ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) |
35 |
34
|
eqeq2d |
⊢ ( 𝑣 = 𝑡 → ( ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
36 |
35
|
2ralbidv |
⊢ ( 𝑣 = 𝑡 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
37 |
32 36
|
3anbi23d |
⊢ ( 𝑣 = 𝑡 → ( ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) ↔ ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) ) |
38 |
24 25 31 37
|
opelopab |
⊢ ( 〈 𝑦 , 𝑡 〉 ∈ { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) } ↔ ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
39 |
23 38
|
bitr2i |
⊢ ( ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ↔ 〈 𝑦 , 𝑡 〉 ∈ adjℎ ) |
40 |
21 39
|
syl6ib |
⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) → 〈 𝑦 , 𝑡 〉 ∈ adjℎ ) ) |
41 |
40
|
eximdv |
⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ∃ 𝑡 ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) → ∃ 𝑡 〈 𝑦 , 𝑡 〉 ∈ adjℎ ) ) |
42 |
3 41
|
mpd |
⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ∃ 𝑡 〈 𝑦 , 𝑡 〉 ∈ adjℎ ) |
43 |
24
|
eldm2 |
⊢ ( 𝑦 ∈ dom adjℎ ↔ ∃ 𝑡 〈 𝑦 , 𝑡 〉 ∈ adjℎ ) |
44 |
42 43
|
sylibr |
⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → 𝑦 ∈ dom adjℎ ) |
45 |
44
|
ssriv |
⊢ ( LinOp ∩ ContOp ) ⊆ dom adjℎ |