Metamath Proof Explorer


Theorem cnm2m1cnm3

Description: Subtracting 2 and afterwards 1 from a number results in the difference between the number and 3. (Contributed by Alexander van der Vekens, 16-Sep-2018)

Ref Expression
Assertion cnm2m1cnm3 ( 𝐴 ∈ ℂ → ( ( 𝐴 − 2 ) − 1 ) = ( 𝐴 − 3 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ )
2 2cnd ( 𝐴 ∈ ℂ → 2 ∈ ℂ )
3 1cnd ( 𝐴 ∈ ℂ → 1 ∈ ℂ )
4 1 2 3 subsub4d ( 𝐴 ∈ ℂ → ( ( 𝐴 − 2 ) − 1 ) = ( 𝐴 − ( 2 + 1 ) ) )
5 2p1e3 ( 2 + 1 ) = 3
6 5 a1i ( 𝐴 ∈ ℂ → ( 2 + 1 ) = 3 )
7 6 oveq2d ( 𝐴 ∈ ℂ → ( 𝐴 − ( 2 + 1 ) ) = ( 𝐴 − 3 ) )
8 4 7 eqtrd ( 𝐴 ∈ ℂ → ( ( 𝐴 − 2 ) − 1 ) = ( 𝐴 − 3 ) )