| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncff |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 2 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
| 3 |
|
cnex |
⊢ ℂ ∈ V |
| 4 |
|
reex |
⊢ ℝ ∈ V |
| 5 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 6 |
3 4 5
|
mpanl12 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 7 |
1 2 6
|
syl2anr |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 8 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → 𝐴 ∈ dom vol ) |
| 9 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |
| 10 |
|
recncf |
⊢ ℜ ∈ ( ℂ –cn→ ℝ ) |
| 11 |
10
|
a1i |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ℜ ∈ ( ℂ –cn→ ℝ ) ) |
| 12 |
9 11
|
cncfco |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ℜ ∘ 𝐹 ) ∈ ( 𝐴 –cn→ ℝ ) ) |
| 13 |
2
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → 𝐴 ⊆ ℝ ) |
| 14 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 15 |
13 14
|
sstrdi |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → 𝐴 ⊆ ℂ ) |
| 16 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 17 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) |
| 18 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 19 |
16 17 18
|
cncfcn |
⊢ ( ( 𝐴 ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝐴 –cn→ ℝ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 20 |
15 14 19
|
sylancl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( 𝐴 –cn→ ℝ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 21 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
| 22 |
16 21
|
rerest |
⊢ ( 𝐴 ⊆ ℝ → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 23 |
13 22
|
syl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 24 |
23
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) = ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 25 |
20 24
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( 𝐴 –cn→ ℝ ) = ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 26 |
12 25
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ℜ ∘ 𝐹 ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 27 |
|
retopbas |
⊢ ran (,) ∈ TopBases |
| 28 |
|
bastg |
⊢ ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) ) |
| 29 |
27 28
|
ax-mp |
⊢ ran (,) ⊆ ( topGen ‘ ran (,) ) |
| 30 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → 𝑥 ∈ ran (,) ) |
| 31 |
29 30
|
sselid |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → 𝑥 ∈ ( topGen ‘ ran (,) ) ) |
| 32 |
|
cnima |
⊢ ( ( ( ℜ ∘ 𝐹 ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ∧ 𝑥 ∈ ( topGen ‘ ran (,) ) ) → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 33 |
26 31 32
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 34 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) |
| 35 |
34
|
subopnmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 36 |
8 33 35
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 37 |
|
imcncf |
⊢ ℑ ∈ ( ℂ –cn→ ℝ ) |
| 38 |
37
|
a1i |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ℑ ∈ ( ℂ –cn→ ℝ ) ) |
| 39 |
9 38
|
cncfco |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ℑ ∘ 𝐹 ) ∈ ( 𝐴 –cn→ ℝ ) ) |
| 40 |
39 25
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ℑ ∘ 𝐹 ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 41 |
|
cnima |
⊢ ( ( ( ℑ ∘ 𝐹 ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ∧ 𝑥 ∈ ( topGen ‘ ran (,) ) ) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 42 |
40 31 41
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 43 |
34
|
subopnmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 44 |
8 42 43
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 45 |
36 44
|
jca |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) |
| 46 |
45
|
ralrimiva |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) → ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) |
| 47 |
|
ismbf1 |
⊢ ( 𝐹 ∈ MblFn ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) |
| 48 |
7 46 47
|
sylanbrc |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) → 𝐹 ∈ MblFn ) |