Step |
Hyp |
Ref |
Expression |
1 |
|
cnmetdval.1 |
⊢ 𝐷 = ( abs ∘ − ) |
2 |
|
subf |
⊢ − : ( ℂ × ℂ ) ⟶ ℂ |
3 |
|
opelxpi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 〈 𝐴 , 𝐵 〉 ∈ ( ℂ × ℂ ) ) |
4 |
|
fvco3 |
⊢ ( ( − : ( ℂ × ℂ ) ⟶ ℂ ∧ 〈 𝐴 , 𝐵 〉 ∈ ( ℂ × ℂ ) ) → ( ( abs ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( abs ‘ ( − ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
5 |
2 3 4
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( abs ‘ ( − ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
6 |
|
df-ov |
⊢ ( 𝐴 𝐷 𝐵 ) = ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) |
7 |
1
|
fveq1i |
⊢ ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( abs ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) |
8 |
6 7
|
eqtri |
⊢ ( 𝐴 𝐷 𝐵 ) = ( ( abs ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) |
9 |
|
df-ov |
⊢ ( 𝐴 − 𝐵 ) = ( − ‘ 〈 𝐴 , 𝐵 〉 ) |
10 |
9
|
fveq2i |
⊢ ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( − ‘ 〈 𝐴 , 𝐵 〉 ) ) |
11 |
5 8 10
|
3eqtr4g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐷 𝐵 ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |