Description: The unit group of the complex numbers is an abelian group. (Contributed by Mario Carneiro, 21-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnmgpabl.m | ⊢ 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) | |
| Assertion | cnmgpabl | ⊢ 𝑀 ∈ Abel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmgpabl.m | ⊢ 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) | |
| 2 | cncrng | ⊢ ℂfld ∈ CRing | |
| 3 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 4 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 5 | cndrng | ⊢ ℂfld ∈ DivRing | |
| 6 | 3 4 5 | drngui | ⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 7 | 6 1 | unitabl | ⊢ ( ℂfld ∈ CRing → 𝑀 ∈ Abel ) |
| 8 | 2 7 | ax-mp | ⊢ 𝑀 ∈ Abel |