Metamath Proof Explorer


Theorem cnmgpabl

Description: The unit group of the complex numbers is an abelian group. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Hypothesis cnmgpabl.m 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) )
Assertion cnmgpabl 𝑀 ∈ Abel

Proof

Step Hyp Ref Expression
1 cnmgpabl.m 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) )
2 cncrng fld ∈ CRing
3 cnfldbas ℂ = ( Base ‘ ℂfld )
4 cnfld0 0 = ( 0g ‘ ℂfld )
5 cndrng fld ∈ DivRing
6 3 4 5 drngui ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld )
7 6 1 unitabl ( ℂfld ∈ CRing → 𝑀 ∈ Abel )
8 2 7 ax-mp 𝑀 ∈ Abel