| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnmgpabl.m | ⊢ 𝑀  =  ( ( mulGrp ‘ ℂfld )  ↾s  ( ℂ  ∖  { 0 } ) ) | 
						
							| 2 |  | cnring | ⊢ ℂfld  ∈  Ring | 
						
							| 3 |  | difss | ⊢ ( ℂ  ∖  { 0 } )  ⊆  ℂ | 
						
							| 4 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 5 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 6 |  | eldifsn | ⊢ ( 1  ∈  ( ℂ  ∖  { 0 } )  ↔  ( 1  ∈  ℂ  ∧  1  ≠  0 ) ) | 
						
							| 7 | 4 5 6 | mpbir2an | ⊢ 1  ∈  ( ℂ  ∖  { 0 } ) | 
						
							| 8 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 9 |  | cnfld1 | ⊢ 1  =  ( 1r ‘ ℂfld ) | 
						
							| 10 | 1 8 9 | ringidss | ⊢ ( ( ℂfld  ∈  Ring  ∧  ( ℂ  ∖  { 0 } )  ⊆  ℂ  ∧  1  ∈  ( ℂ  ∖  { 0 } ) )  →  1  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( ( ℂfld  ∈  Ring  ∧  ( ℂ  ∖  { 0 } )  ⊆  ℂ  ∧  1  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 0g ‘ 𝑀 )  =  1 ) | 
						
							| 12 | 2 3 7 11 | mp3an | ⊢ ( 0g ‘ 𝑀 )  =  1 |