| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnmpopc.r | ⊢ 𝑅  =  ( topGen ‘ ran  (,) ) | 
						
							| 2 |  | cnmpopc.m | ⊢ 𝑀  =  ( 𝑅  ↾t  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 3 |  | cnmpopc.n | ⊢ 𝑁  =  ( 𝑅  ↾t  ( 𝐵 [,] 𝐶 ) ) | 
						
							| 4 |  | cnmpopc.o | ⊢ 𝑂  =  ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) ) | 
						
							| 5 |  | cnmpopc.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 6 |  | cnmpopc.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 7 |  | cnmpopc.b | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 [,] 𝐶 ) ) | 
						
							| 8 |  | cnmpopc.j | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 9 |  | cnmpopc.q | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝐵  ∧  𝑦  ∈  𝑋 ) )  →  𝐷  =  𝐸 ) | 
						
							| 10 |  | cnmpopc.d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝑋  ↦  𝐷 )  ∈  ( ( 𝑀  ×t  𝐽 )  Cn  𝐾 ) ) | 
						
							| 11 |  | cnmpopc.e | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐵 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  𝐸 )  ∈  ( ( 𝑁  ×t  𝐽 )  Cn  𝐾 ) ) | 
						
							| 12 |  | eqid | ⊢ ∪  ( 𝑂  ×t  𝐽 )  =  ∪  ( 𝑂  ×t  𝐽 ) | 
						
							| 13 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 14 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴 [,] 𝐶 )  ⊆  ℝ ) | 
						
							| 15 | 5 6 14 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐶 )  ⊆  ℝ ) | 
						
							| 16 | 15 7 | sseldd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 17 |  | icccld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 18 | 5 16 17 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 19 | 1 | fveq2i | ⊢ ( Clsd ‘ 𝑅 )  =  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) | 
						
							| 20 | 18 19 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ∈  ( Clsd ‘ 𝑅 ) ) | 
						
							| 21 |  | ssun1 | ⊢ ( 𝐴 [,] 𝐵 )  ⊆  ( ( 𝐴 [,] 𝐵 )  ∪  ( 𝐵 [,] 𝐶 ) ) | 
						
							| 22 |  | iccsplit | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐶  ∈  ℝ  ∧  𝐵  ∈  ( 𝐴 [,] 𝐶 ) )  →  ( 𝐴 [,] 𝐶 )  =  ( ( 𝐴 [,] 𝐵 )  ∪  ( 𝐵 [,] 𝐶 ) ) ) | 
						
							| 23 | 5 6 7 22 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐶 )  =  ( ( 𝐴 [,] 𝐵 )  ∪  ( 𝐵 [,] 𝐶 ) ) ) | 
						
							| 24 | 21 23 | sseqtrrid | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ( 𝐴 [,] 𝐶 ) ) | 
						
							| 25 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 26 | 1 | unieqi | ⊢ ∪  𝑅  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 27 | 25 26 | eqtr4i | ⊢ ℝ  =  ∪  𝑅 | 
						
							| 28 | 27 | restcldi | ⊢ ( ( ( 𝐴 [,] 𝐶 )  ⊆  ℝ  ∧  ( 𝐴 [,] 𝐵 )  ∈  ( Clsd ‘ 𝑅 )  ∧  ( 𝐴 [,] 𝐵 )  ⊆  ( 𝐴 [,] 𝐶 ) )  →  ( 𝐴 [,] 𝐵 )  ∈  ( Clsd ‘ ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) ) ) ) | 
						
							| 29 | 15 20 24 28 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ∈  ( Clsd ‘ ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) ) ) ) | 
						
							| 30 | 4 | fveq2i | ⊢ ( Clsd ‘ 𝑂 )  =  ( Clsd ‘ ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) ) ) | 
						
							| 31 | 29 30 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ∈  ( Clsd ‘ 𝑂 ) ) | 
						
							| 32 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 33 | 8 32 | syl | ⊢ ( 𝜑  →  𝑋  =  ∪  𝐽 ) | 
						
							| 34 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 35 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 36 | 35 | topcld | ⊢ ( 𝐽  ∈  Top  →  ∪  𝐽  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 37 | 8 34 36 | 3syl | ⊢ ( 𝜑  →  ∪  𝐽  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 38 | 33 37 | eqeltrd | ⊢ ( 𝜑  →  𝑋  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 39 |  | txcld | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ∈  ( Clsd ‘ 𝑂 )  ∧  𝑋  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ( 𝐴 [,] 𝐵 )  ×  𝑋 )  ∈  ( Clsd ‘ ( 𝑂  ×t  𝐽 ) ) ) | 
						
							| 40 | 31 38 39 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐵 )  ×  𝑋 )  ∈  ( Clsd ‘ ( 𝑂  ×t  𝐽 ) ) ) | 
						
							| 41 |  | icccld | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐵 [,] 𝐶 )  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 42 | 16 6 41 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵 [,] 𝐶 )  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 43 | 42 19 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝐵 [,] 𝐶 )  ∈  ( Clsd ‘ 𝑅 ) ) | 
						
							| 44 |  | ssun2 | ⊢ ( 𝐵 [,] 𝐶 )  ⊆  ( ( 𝐴 [,] 𝐵 )  ∪  ( 𝐵 [,] 𝐶 ) ) | 
						
							| 45 | 44 23 | sseqtrrid | ⊢ ( 𝜑  →  ( 𝐵 [,] 𝐶 )  ⊆  ( 𝐴 [,] 𝐶 ) ) | 
						
							| 46 | 27 | restcldi | ⊢ ( ( ( 𝐴 [,] 𝐶 )  ⊆  ℝ  ∧  ( 𝐵 [,] 𝐶 )  ∈  ( Clsd ‘ 𝑅 )  ∧  ( 𝐵 [,] 𝐶 )  ⊆  ( 𝐴 [,] 𝐶 ) )  →  ( 𝐵 [,] 𝐶 )  ∈  ( Clsd ‘ ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) ) ) ) | 
						
							| 47 | 15 43 45 46 | syl3anc | ⊢ ( 𝜑  →  ( 𝐵 [,] 𝐶 )  ∈  ( Clsd ‘ ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) ) ) ) | 
						
							| 48 | 47 30 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝐵 [,] 𝐶 )  ∈  ( Clsd ‘ 𝑂 ) ) | 
						
							| 49 |  | txcld | ⊢ ( ( ( 𝐵 [,] 𝐶 )  ∈  ( Clsd ‘ 𝑂 )  ∧  𝑋  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ( 𝐵 [,] 𝐶 )  ×  𝑋 )  ∈  ( Clsd ‘ ( 𝑂  ×t  𝐽 ) ) ) | 
						
							| 50 | 48 38 49 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐵 [,] 𝐶 )  ×  𝑋 )  ∈  ( Clsd ‘ ( 𝑂  ×t  𝐽 ) ) ) | 
						
							| 51 | 23 | xpeq1d | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐶 )  ×  𝑋 )  =  ( ( ( 𝐴 [,] 𝐵 )  ∪  ( 𝐵 [,] 𝐶 ) )  ×  𝑋 ) ) | 
						
							| 52 |  | xpundir | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ∪  ( 𝐵 [,] 𝐶 ) )  ×  𝑋 )  =  ( ( ( 𝐴 [,] 𝐵 )  ×  𝑋 )  ∪  ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) ) | 
						
							| 53 | 51 52 | eqtrdi | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐶 )  ×  𝑋 )  =  ( ( ( 𝐴 [,] 𝐵 )  ×  𝑋 )  ∪  ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) ) ) | 
						
							| 54 |  | retopon | ⊢ ( topGen ‘ ran  (,) )  ∈  ( TopOn ‘ ℝ ) | 
						
							| 55 | 1 54 | eqeltri | ⊢ 𝑅  ∈  ( TopOn ‘ ℝ ) | 
						
							| 56 |  | resttopon | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ ℝ )  ∧  ( 𝐴 [,] 𝐶 )  ⊆  ℝ )  →  ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) )  ∈  ( TopOn ‘ ( 𝐴 [,] 𝐶 ) ) ) | 
						
							| 57 | 55 15 56 | sylancr | ⊢ ( 𝜑  →  ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) )  ∈  ( TopOn ‘ ( 𝐴 [,] 𝐶 ) ) ) | 
						
							| 58 | 4 57 | eqeltrid | ⊢ ( 𝜑  →  𝑂  ∈  ( TopOn ‘ ( 𝐴 [,] 𝐶 ) ) ) | 
						
							| 59 |  | txtopon | ⊢ ( ( 𝑂  ∈  ( TopOn ‘ ( 𝐴 [,] 𝐶 ) )  ∧  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  →  ( 𝑂  ×t  𝐽 )  ∈  ( TopOn ‘ ( ( 𝐴 [,] 𝐶 )  ×  𝑋 ) ) ) | 
						
							| 60 | 58 8 59 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂  ×t  𝐽 )  ∈  ( TopOn ‘ ( ( 𝐴 [,] 𝐶 )  ×  𝑋 ) ) ) | 
						
							| 61 |  | toponuni | ⊢ ( ( 𝑂  ×t  𝐽 )  ∈  ( TopOn ‘ ( ( 𝐴 [,] 𝐶 )  ×  𝑋 ) )  →  ( ( 𝐴 [,] 𝐶 )  ×  𝑋 )  =  ∪  ( 𝑂  ×t  𝐽 ) ) | 
						
							| 62 | 60 61 | syl | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐶 )  ×  𝑋 )  =  ∪  ( 𝑂  ×t  𝐽 ) ) | 
						
							| 63 | 53 62 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( 𝐴 [,] 𝐵 )  ×  𝑋 )  ∪  ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) )  =  ∪  ( 𝑂  ×t  𝐽 ) ) | 
						
							| 64 | 24 15 | sstrd | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 65 |  | resttopon | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ ℝ )  ∧  ( 𝐴 [,] 𝐵 )  ⊆  ℝ )  →  ( 𝑅  ↾t  ( 𝐴 [,] 𝐵 ) )  ∈  ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 66 | 55 64 65 | sylancr | ⊢ ( 𝜑  →  ( 𝑅  ↾t  ( 𝐴 [,] 𝐵 ) )  ∈  ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 67 | 2 66 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 68 |  | txtopon | ⊢ ( ( 𝑀  ∈  ( TopOn ‘ ( 𝐴 [,] 𝐵 ) )  ∧  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  →  ( 𝑀  ×t  𝐽 )  ∈  ( TopOn ‘ ( ( 𝐴 [,] 𝐵 )  ×  𝑋 ) ) ) | 
						
							| 69 | 67 8 68 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  ×t  𝐽 )  ∈  ( TopOn ‘ ( ( 𝐴 [,] 𝐵 )  ×  𝑋 ) ) ) | 
						
							| 70 |  | cntop2 | ⊢ ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝑋  ↦  𝐷 )  ∈  ( ( 𝑀  ×t  𝐽 )  Cn  𝐾 )  →  𝐾  ∈  Top ) | 
						
							| 71 | 10 70 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 72 |  | toptopon2 | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 73 | 71 72 | sylib | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 74 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 75 | 5 16 74 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 76 | 75 | biimpa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) | 
						
							| 77 | 76 | simp3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ≤  𝐵 ) | 
						
							| 78 | 77 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  𝑋 )  →  𝑥  ≤  𝐵 ) | 
						
							| 79 | 78 | iftrued | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  𝑋 )  →  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  =  𝐷 ) | 
						
							| 80 | 79 | mpoeq3dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝑋  ↦  𝐷 ) ) | 
						
							| 81 | 80 10 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  ∈  ( ( 𝑀  ×t  𝐽 )  Cn  𝐾 ) ) | 
						
							| 82 |  | cnf2 | ⊢ ( ( ( 𝑀  ×t  𝐽 )  ∈  ( TopOn ‘ ( ( 𝐴 [,] 𝐵 )  ×  𝑋 ) )  ∧  𝐾  ∈  ( TopOn ‘ ∪  𝐾 )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  ∈  ( ( 𝑀  ×t  𝐽 )  Cn  𝐾 ) )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) : ( ( 𝐴 [,] 𝐵 )  ×  𝑋 ) ⟶ ∪  𝐾 ) | 
						
							| 83 | 69 73 81 82 | syl3anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) : ( ( 𝐴 [,] 𝐵 )  ×  𝑋 ) ⟶ ∪  𝐾 ) | 
						
							| 84 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) | 
						
							| 85 | 84 | fmpo | ⊢ ( ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  𝑋 if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  ∈  ∪  𝐾  ↔  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) : ( ( 𝐴 [,] 𝐵 )  ×  𝑋 ) ⟶ ∪  𝐾 ) | 
						
							| 86 | 83 85 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  𝑋 if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  ∈  ∪  𝐾 ) | 
						
							| 87 | 45 15 | sstrd | ⊢ ( 𝜑  →  ( 𝐵 [,] 𝐶 )  ⊆  ℝ ) | 
						
							| 88 |  | resttopon | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ ℝ )  ∧  ( 𝐵 [,] 𝐶 )  ⊆  ℝ )  →  ( 𝑅  ↾t  ( 𝐵 [,] 𝐶 ) )  ∈  ( TopOn ‘ ( 𝐵 [,] 𝐶 ) ) ) | 
						
							| 89 | 55 87 88 | sylancr | ⊢ ( 𝜑  →  ( 𝑅  ↾t  ( 𝐵 [,] 𝐶 ) )  ∈  ( TopOn ‘ ( 𝐵 [,] 𝐶 ) ) ) | 
						
							| 90 | 3 89 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ( TopOn ‘ ( 𝐵 [,] 𝐶 ) ) ) | 
						
							| 91 |  | txtopon | ⊢ ( ( 𝑁  ∈  ( TopOn ‘ ( 𝐵 [,] 𝐶 ) )  ∧  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  →  ( 𝑁  ×t  𝐽 )  ∈  ( TopOn ‘ ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) ) ) | 
						
							| 92 | 90 8 91 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁  ×t  𝐽 )  ∈  ( TopOn ‘ ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) ) ) | 
						
							| 93 |  | elicc2 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐵 [,] 𝐶 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐵  ≤  𝑥  ∧  𝑥  ≤  𝐶 ) ) ) | 
						
							| 94 | 16 6 93 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐵 [,] 𝐶 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐵  ≤  𝑥  ∧  𝑥  ≤  𝐶 ) ) ) | 
						
							| 95 | 94 | biimpa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 [,] 𝐶 ) )  →  ( 𝑥  ∈  ℝ  ∧  𝐵  ≤  𝑥  ∧  𝑥  ≤  𝐶 ) ) | 
						
							| 96 | 95 | simp2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 [,] 𝐶 ) )  →  𝐵  ≤  𝑥 ) | 
						
							| 97 | 96 | biantrud | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 [,] 𝐶 ) )  →  ( 𝑥  ≤  𝐵  ↔  ( 𝑥  ≤  𝐵  ∧  𝐵  ≤  𝑥 ) ) ) | 
						
							| 98 | 95 | simp1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 [,] 𝐶 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 99 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 [,] 𝐶 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 100 | 98 99 | letri3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 [,] 𝐶 ) )  →  ( 𝑥  =  𝐵  ↔  ( 𝑥  ≤  𝐵  ∧  𝐵  ≤  𝑥 ) ) ) | 
						
							| 101 | 97 100 | bitr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 [,] 𝐶 ) )  →  ( 𝑥  ≤  𝐵  ↔  𝑥  =  𝐵 ) ) | 
						
							| 102 | 101 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 [,] 𝐶 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥  ≤  𝐵  ↔  𝑥  =  𝐵 ) ) | 
						
							| 103 | 9 | ancom2s | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑋  ∧  𝑥  =  𝐵 ) )  →  𝐷  =  𝐸 ) | 
						
							| 104 | 103 | ifeq1d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑋  ∧  𝑥  =  𝐵 ) )  →  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  =  if ( 𝑥  ≤  𝐵 ,  𝐸 ,  𝐸 ) ) | 
						
							| 105 |  | ifid | ⊢ if ( 𝑥  ≤  𝐵 ,  𝐸 ,  𝐸 )  =  𝐸 | 
						
							| 106 | 104 105 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑋  ∧  𝑥  =  𝐵 ) )  →  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  =  𝐸 ) | 
						
							| 107 | 106 | expr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥  =  𝐵  →  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  =  𝐸 ) ) | 
						
							| 108 | 107 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 [,] 𝐶 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥  =  𝐵  →  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  =  𝐸 ) ) | 
						
							| 109 | 102 108 | sylbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 [,] 𝐶 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥  ≤  𝐵  →  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  =  𝐸 ) ) | 
						
							| 110 |  | iffalse | ⊢ ( ¬  𝑥  ≤  𝐵  →  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  =  𝐸 ) | 
						
							| 111 | 109 110 | pm2.61d1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 [,] 𝐶 )  ∧  𝑦  ∈  𝑋 )  →  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  =  𝐸 ) | 
						
							| 112 | 111 | mpoeq3dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐵 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  =  ( 𝑥  ∈  ( 𝐵 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  𝐸 ) ) | 
						
							| 113 | 112 11 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐵 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  ∈  ( ( 𝑁  ×t  𝐽 )  Cn  𝐾 ) ) | 
						
							| 114 |  | cnf2 | ⊢ ( ( ( 𝑁  ×t  𝐽 )  ∈  ( TopOn ‘ ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) )  ∧  𝐾  ∈  ( TopOn ‘ ∪  𝐾 )  ∧  ( 𝑥  ∈  ( 𝐵 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  ∈  ( ( 𝑁  ×t  𝐽 )  Cn  𝐾 ) )  →  ( 𝑥  ∈  ( 𝐵 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) : ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) ⟶ ∪  𝐾 ) | 
						
							| 115 | 92 73 113 114 | syl3anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐵 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) : ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) ⟶ ∪  𝐾 ) | 
						
							| 116 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝐵 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  =  ( 𝑥  ∈  ( 𝐵 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) | 
						
							| 117 | 116 | fmpo | ⊢ ( ∀ 𝑥  ∈  ( 𝐵 [,] 𝐶 ) ∀ 𝑦  ∈  𝑋 if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  ∈  ∪  𝐾  ↔  ( 𝑥  ∈  ( 𝐵 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) : ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) ⟶ ∪  𝐾 ) | 
						
							| 118 | 115 117 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐵 [,] 𝐶 ) ∀ 𝑦  ∈  𝑋 if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  ∈  ∪  𝐾 ) | 
						
							| 119 |  | ralun | ⊢ ( ( ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  𝑋 if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  ∈  ∪  𝐾  ∧  ∀ 𝑥  ∈  ( 𝐵 [,] 𝐶 ) ∀ 𝑦  ∈  𝑋 if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  ∈  ∪  𝐾 )  →  ∀ 𝑥  ∈  ( ( 𝐴 [,] 𝐵 )  ∪  ( 𝐵 [,] 𝐶 ) ) ∀ 𝑦  ∈  𝑋 if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  ∈  ∪  𝐾 ) | 
						
							| 120 | 86 118 119 | syl2anc | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( ( 𝐴 [,] 𝐵 )  ∪  ( 𝐵 [,] 𝐶 ) ) ∀ 𝑦  ∈  𝑋 if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  ∈  ∪  𝐾 ) | 
						
							| 121 | 120 23 | raleqtrrdv | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ∀ 𝑦  ∈  𝑋 if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  ∈  ∪  𝐾 ) | 
						
							| 122 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) | 
						
							| 123 | 122 | fmpo | ⊢ ( ∀ 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ∀ 𝑦  ∈  𝑋 if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 )  ∈  ∪  𝐾  ↔  ( 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) : ( ( 𝐴 [,] 𝐶 )  ×  𝑋 ) ⟶ ∪  𝐾 ) | 
						
							| 124 | 121 123 | sylib | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) : ( ( 𝐴 [,] 𝐶 )  ×  𝑋 ) ⟶ ∪  𝐾 ) | 
						
							| 125 | 62 | feq2d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) : ( ( 𝐴 [,] 𝐶 )  ×  𝑋 ) ⟶ ∪  𝐾  ↔  ( 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) : ∪  ( 𝑂  ×t  𝐽 ) ⟶ ∪  𝐾 ) ) | 
						
							| 126 | 124 125 | mpbid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) : ∪  ( 𝑂  ×t  𝐽 ) ⟶ ∪  𝐾 ) | 
						
							| 127 |  | ssid | ⊢ 𝑋  ⊆  𝑋 | 
						
							| 128 |  | resmpo | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ⊆  ( 𝐴 [,] 𝐶 )  ∧  𝑋  ⊆  𝑋 )  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  ↾  ( ( 𝐴 [,] 𝐵 )  ×  𝑋 ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) ) | 
						
							| 129 | 24 127 128 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  ↾  ( ( 𝐴 [,] 𝐵 )  ×  𝑋 ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) ) | 
						
							| 130 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 131 | 1 130 | eqeltri | ⊢ 𝑅  ∈  Top | 
						
							| 132 |  | ovex | ⊢ ( 𝐴 [,] 𝐶 )  ∈  V | 
						
							| 133 |  | resttop | ⊢ ( ( 𝑅  ∈  Top  ∧  ( 𝐴 [,] 𝐶 )  ∈  V )  →  ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) )  ∈  Top ) | 
						
							| 134 | 131 132 133 | mp2an | ⊢ ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) )  ∈  Top | 
						
							| 135 | 4 134 | eqeltri | ⊢ 𝑂  ∈  Top | 
						
							| 136 | 135 | a1i | ⊢ ( 𝜑  →  𝑂  ∈  Top ) | 
						
							| 137 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ∈  V ) | 
						
							| 138 |  | txrest | ⊢ ( ( ( 𝑂  ∈  Top  ∧  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  ∧  ( ( 𝐴 [,] 𝐵 )  ∈  V  ∧  𝑋  ∈  ( Clsd ‘ 𝐽 ) ) )  →  ( ( 𝑂  ×t  𝐽 )  ↾t  ( ( 𝐴 [,] 𝐵 )  ×  𝑋 ) )  =  ( ( 𝑂  ↾t  ( 𝐴 [,] 𝐵 ) )  ×t  ( 𝐽  ↾t  𝑋 ) ) ) | 
						
							| 139 | 136 8 137 38 138 | syl22anc | ⊢ ( 𝜑  →  ( ( 𝑂  ×t  𝐽 )  ↾t  ( ( 𝐴 [,] 𝐵 )  ×  𝑋 ) )  =  ( ( 𝑂  ↾t  ( 𝐴 [,] 𝐵 ) )  ×t  ( 𝐽  ↾t  𝑋 ) ) ) | 
						
							| 140 | 131 | a1i | ⊢ ( 𝜑  →  𝑅  ∈  Top ) | 
						
							| 141 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐶 )  ∈  V ) | 
						
							| 142 |  | restabs | ⊢ ( ( 𝑅  ∈  Top  ∧  ( 𝐴 [,] 𝐵 )  ⊆  ( 𝐴 [,] 𝐶 )  ∧  ( 𝐴 [,] 𝐶 )  ∈  V )  →  ( ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) )  ↾t  ( 𝐴 [,] 𝐵 ) )  =  ( 𝑅  ↾t  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 143 | 140 24 141 142 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) )  ↾t  ( 𝐴 [,] 𝐵 ) )  =  ( 𝑅  ↾t  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 144 | 4 | oveq1i | ⊢ ( 𝑂  ↾t  ( 𝐴 [,] 𝐵 ) )  =  ( ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) )  ↾t  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 145 | 143 144 2 | 3eqtr4g | ⊢ ( 𝜑  →  ( 𝑂  ↾t  ( 𝐴 [,] 𝐵 ) )  =  𝑀 ) | 
						
							| 146 | 33 | oveq2d | ⊢ ( 𝜑  →  ( 𝐽  ↾t  𝑋 )  =  ( 𝐽  ↾t  ∪  𝐽 ) ) | 
						
							| 147 | 35 | restid | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( 𝐽  ↾t  ∪  𝐽 )  =  𝐽 ) | 
						
							| 148 | 8 147 | syl | ⊢ ( 𝜑  →  ( 𝐽  ↾t  ∪  𝐽 )  =  𝐽 ) | 
						
							| 149 | 146 148 | eqtrd | ⊢ ( 𝜑  →  ( 𝐽  ↾t  𝑋 )  =  𝐽 ) | 
						
							| 150 | 145 149 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝑂  ↾t  ( 𝐴 [,] 𝐵 ) )  ×t  ( 𝐽  ↾t  𝑋 ) )  =  ( 𝑀  ×t  𝐽 ) ) | 
						
							| 151 | 139 150 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑂  ×t  𝐽 )  ↾t  ( ( 𝐴 [,] 𝐵 )  ×  𝑋 ) )  =  ( 𝑀  ×t  𝐽 ) ) | 
						
							| 152 | 151 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑂  ×t  𝐽 )  ↾t  ( ( 𝐴 [,] 𝐵 )  ×  𝑋 ) )  Cn  𝐾 )  =  ( ( 𝑀  ×t  𝐽 )  Cn  𝐾 ) ) | 
						
							| 153 | 81 129 152 | 3eltr4d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  ↾  ( ( 𝐴 [,] 𝐵 )  ×  𝑋 ) )  ∈  ( ( ( 𝑂  ×t  𝐽 )  ↾t  ( ( 𝐴 [,] 𝐵 )  ×  𝑋 ) )  Cn  𝐾 ) ) | 
						
							| 154 |  | resmpo | ⊢ ( ( ( 𝐵 [,] 𝐶 )  ⊆  ( 𝐴 [,] 𝐶 )  ∧  𝑋  ⊆  𝑋 )  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  ↾  ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) )  =  ( 𝑥  ∈  ( 𝐵 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) ) | 
						
							| 155 | 45 127 154 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  ↾  ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) )  =  ( 𝑥  ∈  ( 𝐵 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) ) ) | 
						
							| 156 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐵 [,] 𝐶 )  ∈  V ) | 
						
							| 157 |  | txrest | ⊢ ( ( ( 𝑂  ∈  Top  ∧  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  ∧  ( ( 𝐵 [,] 𝐶 )  ∈  V  ∧  𝑋  ∈  ( Clsd ‘ 𝐽 ) ) )  →  ( ( 𝑂  ×t  𝐽 )  ↾t  ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) )  =  ( ( 𝑂  ↾t  ( 𝐵 [,] 𝐶 ) )  ×t  ( 𝐽  ↾t  𝑋 ) ) ) | 
						
							| 158 | 136 8 156 38 157 | syl22anc | ⊢ ( 𝜑  →  ( ( 𝑂  ×t  𝐽 )  ↾t  ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) )  =  ( ( 𝑂  ↾t  ( 𝐵 [,] 𝐶 ) )  ×t  ( 𝐽  ↾t  𝑋 ) ) ) | 
						
							| 159 |  | restabs | ⊢ ( ( 𝑅  ∈  Top  ∧  ( 𝐵 [,] 𝐶 )  ⊆  ( 𝐴 [,] 𝐶 )  ∧  ( 𝐴 [,] 𝐶 )  ∈  V )  →  ( ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) )  ↾t  ( 𝐵 [,] 𝐶 ) )  =  ( 𝑅  ↾t  ( 𝐵 [,] 𝐶 ) ) ) | 
						
							| 160 | 140 45 141 159 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) )  ↾t  ( 𝐵 [,] 𝐶 ) )  =  ( 𝑅  ↾t  ( 𝐵 [,] 𝐶 ) ) ) | 
						
							| 161 | 4 | oveq1i | ⊢ ( 𝑂  ↾t  ( 𝐵 [,] 𝐶 ) )  =  ( ( 𝑅  ↾t  ( 𝐴 [,] 𝐶 ) )  ↾t  ( 𝐵 [,] 𝐶 ) ) | 
						
							| 162 | 160 161 3 | 3eqtr4g | ⊢ ( 𝜑  →  ( 𝑂  ↾t  ( 𝐵 [,] 𝐶 ) )  =  𝑁 ) | 
						
							| 163 | 162 149 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝑂  ↾t  ( 𝐵 [,] 𝐶 ) )  ×t  ( 𝐽  ↾t  𝑋 ) )  =  ( 𝑁  ×t  𝐽 ) ) | 
						
							| 164 | 158 163 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑂  ×t  𝐽 )  ↾t  ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) )  =  ( 𝑁  ×t  𝐽 ) ) | 
						
							| 165 | 164 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑂  ×t  𝐽 )  ↾t  ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) )  Cn  𝐾 )  =  ( ( 𝑁  ×t  𝐽 )  Cn  𝐾 ) ) | 
						
							| 166 | 113 155 165 | 3eltr4d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  ↾  ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) )  ∈  ( ( ( 𝑂  ×t  𝐽 )  ↾t  ( ( 𝐵 [,] 𝐶 )  ×  𝑋 ) )  Cn  𝐾 ) ) | 
						
							| 167 | 12 13 40 50 63 126 153 166 | paste | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐶 ) ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  ≤  𝐵 ,  𝐷 ,  𝐸 ) )  ∈  ( ( 𝑂  ×t  𝐽 )  Cn  𝐾 ) ) |