Step |
Hyp |
Ref |
Expression |
1 |
|
cnmptid.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
cnmpt11.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
3 |
|
cnmpt11.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
4 |
|
cnmpt11.b |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐿 ) ) |
5 |
|
cnmpt11.c |
⊢ ( 𝑦 = 𝐴 → 𝐵 = 𝐶 ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
7 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) |
8 |
1 3 2 7
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) |
9 |
8
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
11 |
10
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
12 |
6 9 11
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝐴 ) ) |
14 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) |
15 |
5
|
eleq1d |
⊢ ( 𝑦 = 𝐴 → ( 𝐵 ∈ ∪ 𝐿 ↔ 𝐶 ∈ ∪ 𝐿 ) ) |
16 |
|
cntop2 |
⊢ ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐿 ) → 𝐿 ∈ Top ) |
17 |
4 16
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ Top ) |
18 |
|
toptopon2 |
⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
19 |
17 18
|
sylib |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
20 |
|
cnf2 |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ∧ ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) : 𝑌 ⟶ ∪ 𝐿 ) |
21 |
3 19 4 20
|
syl3anc |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) : 𝑌 ⟶ ∪ 𝐿 ) |
22 |
14
|
fmpt |
⊢ ( ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝐿 ↔ ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) : 𝑌 ⟶ ∪ 𝐿 ) |
23 |
21 22
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝐿 ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝐿 ) |
25 |
15 24 9
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ∪ 𝐿 ) |
26 |
14 5 9 25
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) |
27 |
13 26
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = 𝐶 ) |
28 |
|
fvco3 |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) ) |
29 |
8 28
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) ) |
30 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) |
31 |
30
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐶 ∈ ∪ 𝐿 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
32 |
6 25 31
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
33 |
27 29 32
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) ) |
34 |
33
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) ) |
35 |
|
nfv |
⊢ Ⅎ 𝑧 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) |
36 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) |
37 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
38 |
36 37
|
nfco |
⊢ Ⅎ 𝑥 ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
39 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
40 |
38 39
|
nffv |
⊢ Ⅎ 𝑥 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) |
41 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) |
42 |
41 39
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) |
43 |
40 42
|
nfeq |
⊢ Ⅎ 𝑥 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) |
44 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) ) |
45 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) ) |
46 |
44 45
|
eqeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) ↔ ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) ) ) |
47 |
35 43 46
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) ) |
48 |
34 47
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) ) |
49 |
|
fco |
⊢ ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) : 𝑌 ⟶ ∪ 𝐿 ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : 𝑋 ⟶ ∪ 𝐿 ) |
50 |
21 8 49
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : 𝑋 ⟶ ∪ 𝐿 ) |
51 |
50
|
ffnd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) Fn 𝑋 ) |
52 |
25
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) : 𝑋 ⟶ ∪ 𝐿 ) |
53 |
52
|
ffnd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) Fn 𝑋 ) |
54 |
|
eqfnfv |
⊢ ( ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) Fn 𝑋 ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) Fn 𝑋 ) → ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) ) ) |
55 |
51 53 54
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) ) ) |
56 |
48 55
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) |
57 |
|
cnco |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐿 ) ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐿 ) ) |
58 |
2 4 57
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐿 ) ) |
59 |
56 58
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ∈ ( 𝐽 Cn 𝐿 ) ) |