| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmptid.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 2 |
|
cnmpt11.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 3 |
|
cnmpt11f.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐾 Cn 𝐿 ) ) |
| 4 |
|
cntop2 |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
| 5 |
2 4
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 6 |
|
toptopon2 |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 7 |
5 6
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 8 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 9 |
|
eqid |
⊢ ∪ 𝐿 = ∪ 𝐿 |
| 10 |
8 9
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐾 Cn 𝐿 ) → 𝐹 : ∪ 𝐾 ⟶ ∪ 𝐿 ) |
| 11 |
3 10
|
syl |
⊢ ( 𝜑 → 𝐹 : ∪ 𝐾 ⟶ ∪ 𝐿 ) |
| 12 |
11
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ∪ 𝐾 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 13 |
12 3
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑦 ∈ ∪ 𝐾 ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ ( 𝐾 Cn 𝐿 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 15 |
1 2 7 13 14
|
cnmpt11 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐿 ) ) |