Metamath Proof Explorer


Theorem cnmpt11f

Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptid.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
cnmpt11.a ( 𝜑 → ( 𝑥𝑋𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) )
cnmpt11f.f ( 𝜑𝐹 ∈ ( 𝐾 Cn 𝐿 ) )
Assertion cnmpt11f ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐹𝐴 ) ) ∈ ( 𝐽 Cn 𝐿 ) )

Proof

Step Hyp Ref Expression
1 cnmptid.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
2 cnmpt11.a ( 𝜑 → ( 𝑥𝑋𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) )
3 cnmpt11f.f ( 𝜑𝐹 ∈ ( 𝐾 Cn 𝐿 ) )
4 cntop2 ( ( 𝑥𝑋𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top )
5 2 4 syl ( 𝜑𝐾 ∈ Top )
6 toptopon2 ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝐾 ) )
7 5 6 sylib ( 𝜑𝐾 ∈ ( TopOn ‘ 𝐾 ) )
8 eqid 𝐾 = 𝐾
9 eqid 𝐿 = 𝐿
10 8 9 cnf ( 𝐹 ∈ ( 𝐾 Cn 𝐿 ) → 𝐹 : 𝐾 𝐿 )
11 3 10 syl ( 𝜑𝐹 : 𝐾 𝐿 )
12 11 feqmptd ( 𝜑𝐹 = ( 𝑦 𝐾 ↦ ( 𝐹𝑦 ) ) )
13 12 3 eqeltrrd ( 𝜑 → ( 𝑦 𝐾 ↦ ( 𝐹𝑦 ) ) ∈ ( 𝐾 Cn 𝐿 ) )
14 fveq2 ( 𝑦 = 𝐴 → ( 𝐹𝑦 ) = ( 𝐹𝐴 ) )
15 1 2 7 13 14 cnmpt11 ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐹𝐴 ) ) ∈ ( 𝐽 Cn 𝐿 ) )