| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmptid.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 2 |
|
cnmpt11.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 3 |
|
cnmpt1t.b |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| 4 |
|
cnmpt12.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 5 |
|
cnmpt12.l |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) |
| 6 |
|
cnmpt12.c |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝑀 ) ) |
| 7 |
|
cnmpt12.d |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) → 𝐶 = 𝐷 ) |
| 8 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) |
| 9 |
1 4 2 8
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) |
| 10 |
9
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) |
| 11 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑍 ) |
| 12 |
1 5 3 11
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑍 ) |
| 13 |
12
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑍 ) |
| 14 |
10 13
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍 ) ) |
| 15 |
|
txtopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑍 ) ) ) |
| 16 |
4 5 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑍 ) ) ) |
| 17 |
|
cntop2 |
⊢ ( ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝑀 ) → 𝑀 ∈ Top ) |
| 18 |
6 17
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Top ) |
| 19 |
|
toptopon2 |
⊢ ( 𝑀 ∈ Top ↔ 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ) |
| 20 |
18 19
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ) |
| 21 |
|
cnf2 |
⊢ ( ( ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑍 ) ) ∧ 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ∧ ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝑀 ) ) → ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) : ( 𝑌 × 𝑍 ) ⟶ ∪ 𝑀 ) |
| 22 |
16 20 6 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) : ( 𝑌 × 𝑍 ) ⟶ ∪ 𝑀 ) |
| 23 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) = ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) |
| 24 |
23
|
fmpo |
⊢ ( ∀ 𝑦 ∈ 𝑌 ∀ 𝑧 ∈ 𝑍 𝐶 ∈ ∪ 𝑀 ↔ ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) : ( 𝑌 × 𝑍 ) ⟶ ∪ 𝑀 ) |
| 25 |
22 24
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 ∀ 𝑧 ∈ 𝑍 𝐶 ∈ ∪ 𝑀 ) |
| 26 |
|
r2al |
⊢ ( ∀ 𝑦 ∈ 𝑌 ∀ 𝑧 ∈ 𝑍 𝐶 ∈ ∪ 𝑀 ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) → 𝐶 ∈ ∪ 𝑀 ) ) |
| 27 |
25 26
|
sylib |
⊢ ( 𝜑 → ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) → 𝐶 ∈ ∪ 𝑀 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) → 𝐶 ∈ ∪ 𝑀 ) ) |
| 29 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑌 ↔ 𝐴 ∈ 𝑌 ) ) |
| 30 |
|
eleq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ 𝑍 ↔ 𝐵 ∈ 𝑍 ) ) |
| 31 |
29 30
|
bi2anan9 |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) → ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ↔ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍 ) ) ) |
| 32 |
7
|
eleq1d |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) → ( 𝐶 ∈ ∪ 𝑀 ↔ 𝐷 ∈ ∪ 𝑀 ) ) |
| 33 |
31 32
|
imbi12d |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) → ( ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) → 𝐶 ∈ ∪ 𝑀 ) ↔ ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍 ) → 𝐷 ∈ ∪ 𝑀 ) ) ) |
| 34 |
33
|
spc2gv |
⊢ ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍 ) → ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) → 𝐶 ∈ ∪ 𝑀 ) → ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍 ) → 𝐷 ∈ ∪ 𝑀 ) ) ) |
| 35 |
14 28 14 34
|
syl3c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ∪ 𝑀 ) |
| 36 |
7 23
|
ovmpoga |
⊢ ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍 ∧ 𝐷 ∈ ∪ 𝑀 ) → ( 𝐴 ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) 𝐵 ) = 𝐷 ) |
| 37 |
10 13 35 36
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) 𝐵 ) = 𝐷 ) |
| 38 |
37
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) |
| 39 |
1 2 3 6
|
cnmpt12f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) 𝐵 ) ) ∈ ( 𝐽 Cn 𝑀 ) ) |
| 40 |
38 39
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ∈ ( 𝐽 Cn 𝑀 ) ) |