Metamath Proof Explorer


Theorem cnmpt1ip

Description: Continuity of inner product; analogue of cnmpt12f which cannot be used directly because .i is not a function. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cnmpt1ip.j 𝐽 = ( TopOpen ‘ 𝑊 )
cnmpt1ip.c 𝐶 = ( TopOpen ‘ ℂfld )
cnmpt1ip.h , = ( ·𝑖𝑊 )
cnmpt1ip.r ( 𝜑𝑊 ∈ ℂPreHil )
cnmpt1ip.k ( 𝜑𝐾 ∈ ( TopOn ‘ 𝑋 ) )
cnmpt1ip.a ( 𝜑 → ( 𝑥𝑋𝐴 ) ∈ ( 𝐾 Cn 𝐽 ) )
cnmpt1ip.b ( 𝜑 → ( 𝑥𝑋𝐵 ) ∈ ( 𝐾 Cn 𝐽 ) )
Assertion cnmpt1ip ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐴 , 𝐵 ) ) ∈ ( 𝐾 Cn 𝐶 ) )

Proof

Step Hyp Ref Expression
1 cnmpt1ip.j 𝐽 = ( TopOpen ‘ 𝑊 )
2 cnmpt1ip.c 𝐶 = ( TopOpen ‘ ℂfld )
3 cnmpt1ip.h , = ( ·𝑖𝑊 )
4 cnmpt1ip.r ( 𝜑𝑊 ∈ ℂPreHil )
5 cnmpt1ip.k ( 𝜑𝐾 ∈ ( TopOn ‘ 𝑋 ) )
6 cnmpt1ip.a ( 𝜑 → ( 𝑥𝑋𝐴 ) ∈ ( 𝐾 Cn 𝐽 ) )
7 cnmpt1ip.b ( 𝜑 → ( 𝑥𝑋𝐵 ) ∈ ( 𝐾 Cn 𝐽 ) )
8 cphngp ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp )
9 ngptps ( 𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp )
10 4 8 9 3syl ( 𝜑𝑊 ∈ TopSp )
11 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
12 11 1 istps ( 𝑊 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) )
13 10 12 sylib ( 𝜑𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) )
14 cnf2 ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ∧ ( 𝑥𝑋𝐴 ) ∈ ( 𝐾 Cn 𝐽 ) ) → ( 𝑥𝑋𝐴 ) : 𝑋 ⟶ ( Base ‘ 𝑊 ) )
15 5 13 6 14 syl3anc ( 𝜑 → ( 𝑥𝑋𝐴 ) : 𝑋 ⟶ ( Base ‘ 𝑊 ) )
16 15 fvmptelrn ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ( Base ‘ 𝑊 ) )
17 cnf2 ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ∧ ( 𝑥𝑋𝐵 ) ∈ ( 𝐾 Cn 𝐽 ) ) → ( 𝑥𝑋𝐵 ) : 𝑋 ⟶ ( Base ‘ 𝑊 ) )
18 5 13 7 17 syl3anc ( 𝜑 → ( 𝑥𝑋𝐵 ) : 𝑋 ⟶ ( Base ‘ 𝑊 ) )
19 18 fvmptelrn ( ( 𝜑𝑥𝑋 ) → 𝐵 ∈ ( Base ‘ 𝑊 ) )
20 eqid ( ·if𝑊 ) = ( ·if𝑊 )
21 11 3 20 ipfval ( ( 𝐴 ∈ ( Base ‘ 𝑊 ) ∧ 𝐵 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐴 ( ·if𝑊 ) 𝐵 ) = ( 𝐴 , 𝐵 ) )
22 16 19 21 syl2anc ( ( 𝜑𝑥𝑋 ) → ( 𝐴 ( ·if𝑊 ) 𝐵 ) = ( 𝐴 , 𝐵 ) )
23 22 mpteq2dva ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐴 ( ·if𝑊 ) 𝐵 ) ) = ( 𝑥𝑋 ↦ ( 𝐴 , 𝐵 ) ) )
24 20 1 2 ipcn ( 𝑊 ∈ ℂPreHil → ( ·if𝑊 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐶 ) )
25 4 24 syl ( 𝜑 → ( ·if𝑊 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐶 ) )
26 5 6 7 25 cnmpt12f ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐴 ( ·if𝑊 ) 𝐵 ) ) ∈ ( 𝐾 Cn 𝐶 ) )
27 23 26 eqeltrrd ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐴 , 𝐵 ) ) ∈ ( 𝐾 Cn 𝐶 ) )