| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnmptk1.j | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 2 |  | cnmptk1.k | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 3 |  | cnmptk1.l | ⊢ ( 𝜑  →  𝐿  ∈  ( TopOn ‘ 𝑍 ) ) | 
						
							| 4 |  | cnmpt1k.m | ⊢ ( 𝜑  →  𝑀  ∈  ( TopOn ‘ 𝑊 ) ) | 
						
							| 5 |  | cnmpt1k.a | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( 𝐽  Cn  𝐿 ) ) | 
						
							| 6 |  | cnmpt1k.b | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑌  ↦  ( 𝑧  ∈  𝑍  ↦  𝐵 ) )  ∈  ( 𝐾  Cn  ( 𝑀  ↑ko  𝐿 ) ) ) | 
						
							| 7 |  | cnmpt1k.c | ⊢ ( 𝑧  =  𝐴  →  𝐵  =  𝐶 ) | 
						
							| 8 |  | cnf2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( TopOn ‘ 𝑍 )  ∧  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( 𝐽  Cn  𝐿 ) )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ 𝑍 ) | 
						
							| 9 | 1 3 5 8 | syl3anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ 𝑍 ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  𝐴 )  =  ( 𝑥  ∈  𝑋  ↦  𝐴 ) | 
						
							| 11 | 10 | fmpt | ⊢ ( ∀ 𝑥  ∈  𝑋 𝐴  ∈  𝑍  ↔  ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ 𝑍 ) | 
						
							| 12 | 9 11 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 𝐴  ∈  𝑍 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ∀ 𝑥  ∈  𝑋 𝐴  ∈  𝑍 ) | 
						
							| 14 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  =  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) | 
						
							| 15 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝑧  ∈  𝑍  ↦  𝐵 )  =  ( 𝑧  ∈  𝑍  ↦  𝐵 ) ) | 
						
							| 16 | 13 14 15 7 | fmptcof | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝑧  ∈  𝑍  ↦  𝐵 )  ∘  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐶 ) ) | 
						
							| 17 | 16 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑌  ↦  ( ( 𝑧  ∈  𝑍  ↦  𝐵 )  ∘  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑥  ∈  𝑋  ↦  𝐶 ) ) ) | 
						
							| 18 |  | topontop | ⊢ ( 𝐿  ∈  ( TopOn ‘ 𝑍 )  →  𝐿  ∈  Top ) | 
						
							| 19 | 3 18 | syl | ⊢ ( 𝜑  →  𝐿  ∈  Top ) | 
						
							| 20 |  | topontop | ⊢ ( 𝑀  ∈  ( TopOn ‘ 𝑊 )  →  𝑀  ∈  Top ) | 
						
							| 21 | 4 20 | syl | ⊢ ( 𝜑  →  𝑀  ∈  Top ) | 
						
							| 22 |  | eqid | ⊢ ( 𝑀  ↑ko  𝐿 )  =  ( 𝑀  ↑ko  𝐿 ) | 
						
							| 23 | 22 | xkotopon | ⊢ ( ( 𝐿  ∈  Top  ∧  𝑀  ∈  Top )  →  ( 𝑀  ↑ko  𝐿 )  ∈  ( TopOn ‘ ( 𝐿  Cn  𝑀 ) ) ) | 
						
							| 24 | 19 21 23 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  ↑ko  𝐿 )  ∈  ( TopOn ‘ ( 𝐿  Cn  𝑀 ) ) ) | 
						
							| 25 | 21 5 | xkoco1cn | ⊢ ( 𝜑  →  ( 𝑤  ∈  ( 𝐿  Cn  𝑀 )  ↦  ( 𝑤  ∘  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) )  ∈  ( ( 𝑀  ↑ko  𝐿 )  Cn  ( 𝑀  ↑ko  𝐽 ) ) ) | 
						
							| 26 |  | coeq1 | ⊢ ( 𝑤  =  ( 𝑧  ∈  𝑍  ↦  𝐵 )  →  ( 𝑤  ∘  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  =  ( ( 𝑧  ∈  𝑍  ↦  𝐵 )  ∘  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ) | 
						
							| 27 | 2 6 24 25 26 | cnmpt11 | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑌  ↦  ( ( 𝑧  ∈  𝑍  ↦  𝐵 )  ∘  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) )  ∈  ( 𝐾  Cn  ( 𝑀  ↑ko  𝐽 ) ) ) | 
						
							| 28 | 17 27 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑌  ↦  ( 𝑥  ∈  𝑋  ↦  𝐶 ) )  ∈  ( 𝐾  Cn  ( 𝑀  ↑ko  𝐽 ) ) ) |