Metamath Proof Explorer


Theorem cnmpt1st

Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmpt21.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
cnmpt21.k ( 𝜑𝐾 ∈ ( TopOn ‘ 𝑌 ) )
Assertion cnmpt1st ( 𝜑 → ( 𝑥𝑋 , 𝑦𝑌𝑥 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) )

Proof

Step Hyp Ref Expression
1 cnmpt21.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
2 cnmpt21.k ( 𝜑𝐾 ∈ ( TopOn ‘ 𝑌 ) )
3 fo1st 1st : V –onto→ V
4 fofn ( 1st : V –onto→ V → 1st Fn V )
5 3 4 ax-mp 1st Fn V
6 ssv ( 𝑋 × 𝑌 ) ⊆ V
7 fnssres ( ( 1st Fn V ∧ ( 𝑋 × 𝑌 ) ⊆ V ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) )
8 5 6 7 mp2an ( 1st ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 )
9 dffn5 ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ↔ ( 1st ↾ ( 𝑋 × 𝑌 ) ) = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ) )
10 8 9 mpbi ( 1st ↾ ( 𝑋 × 𝑌 ) ) = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) )
11 fvres ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) = ( 1st𝑧 ) )
12 11 mpteq2ia ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ) = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st𝑧 ) )
13 vex 𝑥 ∈ V
14 vex 𝑦 ∈ V
15 13 14 op1std ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 1st𝑧 ) = 𝑥 )
16 15 mpompt ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st𝑧 ) ) = ( 𝑥𝑋 , 𝑦𝑌𝑥 )
17 10 12 16 3eqtri ( 1st ↾ ( 𝑋 × 𝑌 ) ) = ( 𝑥𝑋 , 𝑦𝑌𝑥 )
18 tx1cn ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) )
19 1 2 18 syl2anc ( 𝜑 → ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) )
20 17 19 eqeltrrid ( 𝜑 → ( 𝑥𝑋 , 𝑦𝑌𝑥 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) )