| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmptid.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 2 |
|
cnmpt11.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 3 |
|
cnmpt1t.b |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| 4 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 5 |
|
mpteq1 |
⊢ ( 𝑋 = ∪ 𝐽 → ( 𝑥 ∈ 𝑋 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ ∪ 𝐽 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) ) |
| 6 |
1 4 5
|
3syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ ∪ 𝐽 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 8 |
|
cntop2 |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
| 9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 10 |
|
toptopon2 |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 11 |
9 10
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 12 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ 𝐾 ) |
| 13 |
1 11 2 12
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ 𝐾 ) |
| 14 |
13
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ∪ 𝐾 ) |
| 15 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
| 16 |
15
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ 𝐾 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 17 |
7 14 16
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 18 |
|
cntop2 |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) → 𝐿 ∈ Top ) |
| 19 |
3 18
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 20 |
|
toptopon2 |
⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
| 21 |
19 20
|
sylib |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
| 22 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ∪ 𝐿 ) |
| 23 |
1 21 3 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ∪ 𝐿 ) |
| 24 |
23
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ∪ 𝐿 ) |
| 25 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) |
| 26 |
25
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐵 ∈ ∪ 𝐿 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 27 |
7 24 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 28 |
17 27
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 = 〈 𝐴 , 𝐵 〉 ) |
| 29 |
28
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 30 |
6 29
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑥 ∈ ∪ 𝐽 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 31 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 32 |
|
nfcv |
⊢ Ⅎ 𝑦 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 |
| 33 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑦 ) |
| 34 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑦 ) |
| 35 |
33 34
|
nfop |
⊢ Ⅎ 𝑥 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑦 ) 〉 |
| 36 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑦 ) ) |
| 37 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑦 ) ) |
| 38 |
36 37
|
opeq12d |
⊢ ( 𝑥 = 𝑦 → 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑦 ) 〉 ) |
| 39 |
32 35 38
|
cbvmpt |
⊢ ( 𝑥 ∈ ∪ 𝐽 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑦 ∈ ∪ 𝐽 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑦 ) 〉 ) |
| 40 |
31 39
|
txcnmpt |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) ) → ( 𝑥 ∈ ∪ 𝐽 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐿 ) ) ) |
| 41 |
2 3 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ∪ 𝐽 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐿 ) ) ) |
| 42 |
30 41
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐿 ) ) ) |