| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmpt21.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 2 |
|
cnmpt21.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 3 |
|
cnmpt21.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) |
| 4 |
|
cnmpt21.l |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) |
| 5 |
|
cnmpt21.b |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∈ ( 𝐿 Cn 𝑀 ) ) |
| 6 |
|
cnmpt21.c |
⊢ ( 𝑧 = 𝐴 → 𝐵 = 𝐶 ) |
| 7 |
|
df-ov |
⊢ ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) |
| 8 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → 𝑥 ∈ 𝑋 ) |
| 9 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → 𝑦 ∈ 𝑌 ) |
| 10 |
|
txtopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 11 |
1 2 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 12 |
|
cnf2 |
⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) |
| 13 |
11 4 3 12
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) |
| 14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) |
| 15 |
14
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) |
| 16 |
13 15
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ) |
| 17 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑍 ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑍 ) ) |
| 19 |
18
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → 𝐴 ∈ 𝑍 ) |
| 20 |
14
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝐴 ∈ 𝑍 ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = 𝐴 ) |
| 21 |
8 9 19 20
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = 𝐴 ) |
| 22 |
7 21
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) = 𝐴 ) |
| 23 |
22
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝐴 ) ) |
| 24 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) |
| 25 |
6
|
eleq1d |
⊢ ( 𝑧 = 𝐴 → ( 𝐵 ∈ ∪ 𝑀 ↔ 𝐶 ∈ ∪ 𝑀 ) ) |
| 26 |
|
cntop2 |
⊢ ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∈ ( 𝐿 Cn 𝑀 ) → 𝑀 ∈ Top ) |
| 27 |
5 26
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Top ) |
| 28 |
|
toptopon2 |
⊢ ( 𝑀 ∈ Top ↔ 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ) |
| 29 |
27 28
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ) |
| 30 |
|
cnf2 |
⊢ ( ( 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ∧ ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∈ ( 𝐿 Cn 𝑀 ) ) → ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ∪ 𝑀 ) |
| 31 |
4 29 5 30
|
syl3anc |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ∪ 𝑀 ) |
| 32 |
24
|
fmpt |
⊢ ( ∀ 𝑧 ∈ 𝑍 𝐵 ∈ ∪ 𝑀 ↔ ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ∪ 𝑀 ) |
| 33 |
31 32
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑍 𝐵 ∈ ∪ 𝑀 ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ∀ 𝑧 ∈ 𝑍 𝐵 ∈ ∪ 𝑀 ) |
| 35 |
25 34 19
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → 𝐶 ∈ ∪ 𝑀 ) |
| 36 |
24 6 19 35
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) |
| 37 |
23 36
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = 𝐶 ) |
| 38 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 39 |
|
fvco3 |
⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑌 ) ) → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) ) |
| 40 |
13 38 39
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) ) |
| 41 |
|
df-ov |
⊢ ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) 𝑦 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) |
| 42 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) |
| 43 |
42
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝐶 ∈ ∪ 𝑀 ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) 𝑦 ) = 𝐶 ) |
| 44 |
8 9 35 43
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) 𝑦 ) = 𝐶 ) |
| 45 |
41 44
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) = 𝐶 ) |
| 46 |
37 40 45
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 47 |
46
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 48 |
|
nfv |
⊢ Ⅎ 𝑢 ∀ 𝑦 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) |
| 49 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑌 |
| 50 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) |
| 51 |
|
nfmpo1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) |
| 52 |
50 51
|
nfco |
⊢ Ⅎ 𝑥 ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 53 |
|
nfcv |
⊢ Ⅎ 𝑥 〈 𝑢 , 𝑣 〉 |
| 54 |
52 53
|
nffv |
⊢ Ⅎ 𝑥 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) |
| 55 |
|
nfmpo1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) |
| 56 |
55 53
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) |
| 57 |
54 56
|
nfeq |
⊢ Ⅎ 𝑥 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) |
| 58 |
49 57
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) |
| 59 |
|
nfv |
⊢ Ⅎ 𝑣 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) |
| 60 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) |
| 61 |
|
nfmpo2 |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) |
| 62 |
60 61
|
nfco |
⊢ Ⅎ 𝑦 ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 63 |
|
nfcv |
⊢ Ⅎ 𝑦 〈 𝑥 , 𝑣 〉 |
| 64 |
62 63
|
nffv |
⊢ Ⅎ 𝑦 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) |
| 65 |
|
nfmpo2 |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) |
| 66 |
65 63
|
nffv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) |
| 67 |
64 66
|
nfeq |
⊢ Ⅎ 𝑦 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) |
| 68 |
|
opeq2 |
⊢ ( 𝑦 = 𝑣 → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , 𝑣 〉 ) |
| 69 |
68
|
fveq2d |
⊢ ( 𝑦 = 𝑣 → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) ) |
| 70 |
68
|
fveq2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) ) |
| 71 |
69 70
|
eqeq12d |
⊢ ( 𝑦 = 𝑣 → ( ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ↔ ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) ) ) |
| 72 |
59 67 71
|
cbvralw |
⊢ ( ∀ 𝑦 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ↔ ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) ) |
| 73 |
|
opeq1 |
⊢ ( 𝑥 = 𝑢 → 〈 𝑥 , 𝑣 〉 = 〈 𝑢 , 𝑣 〉 ) |
| 74 |
73
|
fveq2d |
⊢ ( 𝑥 = 𝑢 → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) = ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 75 |
73
|
fveq2d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 76 |
74 75
|
eqeq12d |
⊢ ( 𝑥 = 𝑢 → ( ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) ↔ ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) ) |
| 77 |
76
|
ralbidv |
⊢ ( 𝑥 = 𝑢 → ( ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) ↔ ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) ) |
| 78 |
72 77
|
bitrid |
⊢ ( 𝑥 = 𝑢 → ( ∀ 𝑦 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ↔ ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) ) |
| 79 |
48 58 78
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ↔ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 80 |
47 79
|
sylib |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 81 |
|
fveq2 |
⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) = ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 82 |
|
fveq2 |
⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 𝑤 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 83 |
81 82
|
eqeq12d |
⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ( ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 𝑤 ) ↔ ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) ) |
| 84 |
83
|
ralxp |
⊢ ( ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 𝑤 ) ↔ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 85 |
80 84
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 𝑤 ) ) |
| 86 |
|
fco |
⊢ ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ∪ 𝑀 ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑀 ) |
| 87 |
31 13 86
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑀 ) |
| 88 |
87
|
ffnd |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) Fn ( 𝑋 × 𝑌 ) ) |
| 89 |
35
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐶 ∈ ∪ 𝑀 ) |
| 90 |
42
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐶 ∈ ∪ 𝑀 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑀 ) |
| 91 |
89 90
|
sylib |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑀 ) |
| 92 |
91
|
ffnd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) Fn ( 𝑋 × 𝑌 ) ) |
| 93 |
|
eqfnfv |
⊢ ( ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) Fn ( 𝑋 × 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) Fn ( 𝑋 × 𝑌 ) ) → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ↔ ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 𝑤 ) ) ) |
| 94 |
88 92 93
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ↔ ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 𝑤 ) ) ) |
| 95 |
85 94
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) |
| 96 |
|
cnco |
⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ∧ ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∈ ( 𝐿 Cn 𝑀 ) ) → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) |
| 97 |
3 5 96
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) |
| 98 |
95 97
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) |