Step |
Hyp |
Ref |
Expression |
1 |
|
cnmpt21.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
cnmpt21.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
3 |
|
cnmpt21.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) |
4 |
|
cnmpt2t.b |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) |
5 |
|
cnmpt22.l |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) |
6 |
|
cnmpt22.m |
⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ 𝑊 ) ) |
7 |
|
cnmpt22.c |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝑁 ) ) |
8 |
|
cnmpt22.d |
⊢ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → 𝐶 = 𝐷 ) |
9 |
|
df-ov |
⊢ ( 𝐴 ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) 𝐵 ) = ( ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) ‘ 〈 𝐴 , 𝐵 〉 ) |
10 |
|
txtopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
11 |
1 2 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
12 |
|
cnf2 |
⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) |
13 |
11 5 3 12
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) |
14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) |
15 |
14
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) |
16 |
13 15
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ) |
17 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑍 ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑍 ) ) |
19 |
18
|
3impib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑍 ) |
20 |
|
cnf2 |
⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝑀 ∈ ( TopOn ‘ 𝑊 ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑊 ) |
21 |
11 6 4 20
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑊 ) |
22 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) |
23 |
22
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ 𝑊 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑊 ) |
24 |
21 23
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ 𝑊 ) |
25 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ 𝑊 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ 𝑊 ) ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ 𝑊 ) ) |
27 |
26
|
3impib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ 𝑊 ) |
28 |
19 27
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊 ) ) |
29 |
|
txtopon |
⊢ ( ( 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ 𝑀 ∈ ( TopOn ‘ 𝑊 ) ) → ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑍 × 𝑊 ) ) ) |
30 |
5 6 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑍 × 𝑊 ) ) ) |
31 |
|
cntop2 |
⊢ ( ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝑁 ) → 𝑁 ∈ Top ) |
32 |
7 31
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ Top ) |
33 |
|
toptopon2 |
⊢ ( 𝑁 ∈ Top ↔ 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ) |
34 |
32 33
|
sylib |
⊢ ( 𝜑 → 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ) |
35 |
|
cnf2 |
⊢ ( ( ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑍 × 𝑊 ) ) ∧ 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ∧ ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝑁 ) ) → ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) : ( 𝑍 × 𝑊 ) ⟶ ∪ 𝑁 ) |
36 |
30 34 7 35
|
syl3anc |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) : ( 𝑍 × 𝑊 ) ⟶ ∪ 𝑁 ) |
37 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) = ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) |
38 |
37
|
fmpo |
⊢ ( ∀ 𝑧 ∈ 𝑍 ∀ 𝑤 ∈ 𝑊 𝐶 ∈ ∪ 𝑁 ↔ ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) : ( 𝑍 × 𝑊 ) ⟶ ∪ 𝑁 ) |
39 |
36 38
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑍 ∀ 𝑤 ∈ 𝑊 𝐶 ∈ ∪ 𝑁 ) |
40 |
|
r2al |
⊢ ( ∀ 𝑧 ∈ 𝑍 ∀ 𝑤 ∈ 𝑊 𝐶 ∈ ∪ 𝑁 ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊 ) → 𝐶 ∈ ∪ 𝑁 ) ) |
41 |
39 40
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊 ) → 𝐶 ∈ ∪ 𝑁 ) ) |
42 |
41
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊 ) → 𝐶 ∈ ∪ 𝑁 ) ) |
43 |
|
eleq1 |
⊢ ( 𝑧 = 𝐴 → ( 𝑧 ∈ 𝑍 ↔ 𝐴 ∈ 𝑍 ) ) |
44 |
|
eleq1 |
⊢ ( 𝑤 = 𝐵 → ( 𝑤 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊 ) ) |
45 |
43 44
|
bi2anan9 |
⊢ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → ( ( 𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊 ) ↔ ( 𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊 ) ) ) |
46 |
8
|
eleq1d |
⊢ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → ( 𝐶 ∈ ∪ 𝑁 ↔ 𝐷 ∈ ∪ 𝑁 ) ) |
47 |
45 46
|
imbi12d |
⊢ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → ( ( ( 𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊 ) → 𝐶 ∈ ∪ 𝑁 ) ↔ ( ( 𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊 ) → 𝐷 ∈ ∪ 𝑁 ) ) ) |
48 |
47
|
spc2gv |
⊢ ( ( 𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊 ) → 𝐶 ∈ ∪ 𝑁 ) → ( ( 𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊 ) → 𝐷 ∈ ∪ 𝑁 ) ) ) |
49 |
28 42 28 48
|
syl3c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐷 ∈ ∪ 𝑁 ) |
50 |
8 37
|
ovmpoga |
⊢ ( ( 𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊 ∧ 𝐷 ∈ ∪ 𝑁 ) → ( 𝐴 ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) 𝐵 ) = 𝐷 ) |
51 |
19 27 49 50
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) 𝐵 ) = 𝐷 ) |
52 |
9 51
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐷 ) |
53 |
52
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐷 ) ) |
54 |
1 2 3 4
|
cnmpt2t |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝐴 , 𝐵 〉 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn ( 𝐿 ×t 𝑀 ) ) ) |
55 |
1 2 54 7
|
cnmpt21f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) ‘ 〈 𝐴 , 𝐵 〉 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) ) |
56 |
53 55
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐷 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) ) |