Step |
Hyp |
Ref |
Expression |
1 |
|
cnmpt1ds.d |
⊢ 𝐷 = ( dist ‘ 𝐺 ) |
2 |
|
cnmpt1ds.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
3 |
|
cnmpt1ds.r |
⊢ 𝑅 = ( topGen ‘ ran (,) ) |
4 |
|
cnmpt1ds.g |
⊢ ( 𝜑 → 𝐺 ∈ MetSp ) |
5 |
|
cnmpt1ds.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
6 |
|
cnmpt2ds.l |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) |
7 |
|
cnmpt2ds.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) |
8 |
|
cnmpt2ds.b |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) |
9 |
|
txtopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
10 |
5 6 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
11 |
|
mstps |
⊢ ( 𝐺 ∈ MetSp → 𝐺 ∈ TopSp ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
14 |
13 2
|
istps |
⊢ ( 𝐺 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
15 |
12 14
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
16 |
|
cnf2 |
⊢ ( ( ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐺 ) ) |
17 |
10 15 7 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐺 ) ) |
18 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) |
19 |
18
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝐺 ) ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐺 ) ) |
20 |
17 19
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
21 |
20
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
22 |
21
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
23 |
|
cnf2 |
⊢ ( ( ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐺 ) ) |
24 |
10 15 8 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐺 ) ) |
25 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) |
26 |
25
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝐺 ) ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐺 ) ) |
27 |
24 26
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝐺 ) ) |
28 |
27
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝐺 ) ) |
29 |
28
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ ( Base ‘ 𝐺 ) ) |
30 |
22 29
|
ovresd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 ( 𝐷 ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |
31 |
30
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 ( 𝐷 ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |
32 |
31
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 ( 𝐷 ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝐵 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 𝐷 𝐵 ) ) ) |
33 |
13 1 2 3
|
msdcn |
⊢ ( 𝐺 ∈ MetSp → ( 𝐷 ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝑅 ) ) |
34 |
4 33
|
syl |
⊢ ( 𝜑 → ( 𝐷 ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝑅 ) ) |
35 |
5 6 7 8 34
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 ( 𝐷 ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝐵 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝑅 ) ) |
36 |
32 35
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 𝐷 𝐵 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝑅 ) ) |