Step |
Hyp |
Ref |
Expression |
1 |
|
cnmpt1ip.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
2 |
|
cnmpt1ip.c |
⊢ 𝐶 = ( TopOpen ‘ ℂfld ) |
3 |
|
cnmpt1ip.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
4 |
|
cnmpt1ip.r |
⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) |
5 |
|
cnmpt1ip.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
6 |
|
cnmpt2ip.l |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) |
7 |
|
cnmpt2ip.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) |
8 |
|
cnmpt2ip.b |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) |
9 |
|
txtopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
10 |
5 6 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
11 |
|
cphngp |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) |
12 |
|
ngptps |
⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp ) |
13 |
4 11 12
|
3syl |
⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
15 |
14 1
|
istps |
⊢ ( 𝑊 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
16 |
13 15
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
17 |
|
cnf2 |
⊢ ( ( ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) |
18 |
10 16 7 17
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) |
19 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) |
20 |
19
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝑊 ) ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) |
21 |
18 20
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝑊 ) ) |
22 |
21
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝑊 ) ) |
23 |
22
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ ( Base ‘ 𝑊 ) ) |
24 |
|
cnf2 |
⊢ ( ( ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) |
25 |
10 16 8 24
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) |
26 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) |
27 |
26
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝑊 ) ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) |
28 |
25 27
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝑊 ) ) |
29 |
28
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝑊 ) ) |
30 |
29
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ ( Base ‘ 𝑊 ) ) |
31 |
|
eqid |
⊢ ( ·if ‘ 𝑊 ) = ( ·if ‘ 𝑊 ) |
32 |
14 3 31
|
ipfval |
⊢ ( ( 𝐴 ∈ ( Base ‘ 𝑊 ) ∧ 𝐵 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐴 ( ·if ‘ 𝑊 ) 𝐵 ) = ( 𝐴 , 𝐵 ) ) |
33 |
23 30 32
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 ( ·if ‘ 𝑊 ) 𝐵 ) = ( 𝐴 , 𝐵 ) ) |
34 |
33
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 ( ·if ‘ 𝑊 ) 𝐵 ) = ( 𝐴 , 𝐵 ) ) |
35 |
34
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 ( ·if ‘ 𝑊 ) 𝐵 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 , 𝐵 ) ) ) |
36 |
31 1 2
|
ipcn |
⊢ ( 𝑊 ∈ ℂPreHil → ( ·if ‘ 𝑊 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐶 ) ) |
37 |
4 36
|
syl |
⊢ ( 𝜑 → ( ·if ‘ 𝑊 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐶 ) ) |
38 |
5 6 7 8 37
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 ( ·if ‘ 𝑊 ) 𝐵 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐶 ) ) |
39 |
35 38
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 , 𝐵 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐶 ) ) |