Step |
Hyp |
Ref |
Expression |
1 |
|
cnmpt2k.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
cnmpt2k.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
3 |
|
cnmpt2k.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑌 |
5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑣 |
6 |
|
nfmpo2 |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
8 |
5 6 7
|
nfov |
⊢ Ⅎ 𝑥 ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) |
9 |
4 8
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑣 ∈ 𝑌 ↦ ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑤 ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑣 |
12 |
|
nfmpo1 |
⊢ Ⅎ 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
13 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑤 |
14 |
11 12 13
|
nfov |
⊢ Ⅎ 𝑦 ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑣 ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) |
16 |
|
oveq1 |
⊢ ( 𝑣 = 𝑦 → ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) = ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) |
17 |
14 15 16
|
cbvmpt |
⊢ ( 𝑣 ∈ 𝑌 ↦ ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) |
18 |
|
oveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) = ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) |
19 |
18
|
mpteq2dv |
⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) ) |
20 |
17 19
|
syl5eq |
⊢ ( 𝑤 = 𝑥 → ( 𝑣 ∈ 𝑌 ↦ ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) ) |
21 |
9 10 20
|
cbvmpt |
⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑣 ∈ 𝑌 ↦ ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) ) |
22 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) |
23 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
24 |
|
txtopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝐾 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑋 ) ) ) |
25 |
2 1 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑋 ) ) ) |
26 |
|
cntop2 |
⊢ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) → 𝐿 ∈ Top ) |
27 |
3 26
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ Top ) |
28 |
|
toptopon2 |
⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
29 |
27 28
|
sylib |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
30 |
1 2 3
|
cnmptcom |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐿 ) ) |
31 |
|
cnf2 |
⊢ ( ( ( 𝐾 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑋 ) ) ∧ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ∧ ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐿 ) ) → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) : ( 𝑌 × 𝑋 ) ⟶ ∪ 𝐿 ) |
32 |
25 29 30 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) : ( 𝑌 × 𝑋 ) ⟶ ∪ 𝐿 ) |
33 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
34 |
33
|
fmpo |
⊢ ( ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿 ↔ ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) : ( 𝑌 × 𝑋 ) ⟶ ∪ 𝐿 ) |
35 |
32 34
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿 ) |
36 |
35
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿 ) |
37 |
36
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ∪ 𝐿 ) |
38 |
37
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ ∪ 𝐿 ) |
39 |
33
|
ovmpt4g |
⊢ ( ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ 𝐿 ) → ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) = 𝐴 ) |
40 |
22 23 38 39
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) = 𝐴 ) |
41 |
40
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
42 |
41
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ) |
43 |
21 42
|
syl5eq |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑣 ∈ 𝑌 ↦ ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ) |
44 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑣 ∈ 𝑌 ↦ 〈 𝑣 , 𝑤 〉 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑣 ∈ 𝑌 ↦ 〈 𝑣 , 𝑤 〉 ) ) |
45 |
44
|
xkoinjcn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑤 ∈ 𝑋 ↦ ( 𝑣 ∈ 𝑌 ↦ 〈 𝑣 , 𝑤 〉 ) ) ∈ ( 𝐽 Cn ( ( 𝐾 ×t 𝐽 ) ↑ko 𝐾 ) ) ) |
46 |
1 2 45
|
syl2anc |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑣 ∈ 𝑌 ↦ 〈 𝑣 , 𝑤 〉 ) ) ∈ ( 𝐽 Cn ( ( 𝐾 ×t 𝐽 ) ↑ko 𝐾 ) ) ) |
47 |
32
|
feqmptd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑧 ∈ ( 𝑌 × 𝑋 ) ↦ ( ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑧 ) ) ) |
48 |
47 30
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑌 × 𝑋 ) ↦ ( ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑧 ) ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐿 ) ) |
49 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑣 , 𝑤 〉 → ( ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 〈 𝑣 , 𝑤 〉 ) ) |
50 |
|
df-ov |
⊢ ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) = ( ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 〈 𝑣 , 𝑤 〉 ) |
51 |
49 50
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑣 , 𝑤 〉 → ( ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑧 ) = ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) |
52 |
1 2 25 46 48 51
|
cnmptk1 |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑣 ∈ 𝑌 ↦ ( 𝑣 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
53 |
43 52
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) |