| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulrcn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) |
| 2 |
|
cnmpt1mulr.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
cnmpt1mulr.r |
⊢ ( 𝜑 → 𝑅 ∈ TopRing ) |
| 4 |
|
cnmpt1mulr.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
| 5 |
|
cnmpt2mulr.l |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) |
| 6 |
|
cnmpt2mulr.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) |
| 7 |
|
cnmpt2mulr.b |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) |
| 8 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 9 |
8 1
|
mgptopn |
⊢ 𝐽 = ( TopOpen ‘ ( mulGrp ‘ 𝑅 ) ) |
| 10 |
8 2
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 11 |
8
|
trgtmd |
⊢ ( 𝑅 ∈ TopRing → ( mulGrp ‘ 𝑅 ) ∈ TopMnd ) |
| 12 |
3 11
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ TopMnd ) |
| 13 |
9 10 12 4 5 6 7
|
cnmpt2plusg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 · 𝐵 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) |