| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmpt21.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 2 |
|
cnmpt21.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 3 |
|
cnmpt21.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) |
| 4 |
|
cnmpt2t.b |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 6 |
|
df-ov |
⊢ ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑢 , 𝑣 〉 ) |
| 7 |
5 6
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) = ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 9 |
|
df-ov |
⊢ ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 〈 𝑢 , 𝑣 〉 ) |
| 10 |
8 9
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) = ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) ) |
| 11 |
7 10
|
opeq12d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 = 〈 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) , ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) 〉 ) |
| 12 |
11
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) = ( 𝑢 ∈ 𝑋 , 𝑣 ∈ 𝑌 ↦ 〈 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) , ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) 〉 ) |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑢 |
| 14 |
|
nfmpo1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑣 |
| 16 |
13 14 15
|
nfov |
⊢ Ⅎ 𝑥 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) |
| 17 |
|
nfmpo1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) |
| 18 |
13 17 15
|
nfov |
⊢ Ⅎ 𝑥 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) |
| 19 |
16 18
|
nfop |
⊢ Ⅎ 𝑥 〈 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) , ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) 〉 |
| 20 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑢 |
| 21 |
|
nfmpo2 |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) |
| 22 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑣 |
| 23 |
20 21 22
|
nfov |
⊢ Ⅎ 𝑦 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) |
| 24 |
|
nfmpo2 |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) |
| 25 |
20 24 22
|
nfov |
⊢ Ⅎ 𝑦 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) |
| 26 |
23 25
|
nfop |
⊢ Ⅎ 𝑦 〈 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) , ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) 〉 |
| 27 |
|
nfcv |
⊢ Ⅎ 𝑢 〈 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) , ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) 〉 |
| 28 |
|
nfcv |
⊢ Ⅎ 𝑣 〈 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) , ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) 〉 |
| 29 |
|
oveq12 |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑦 ) → ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) = ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) ) |
| 30 |
|
oveq12 |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑦 ) → ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) = ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) ) |
| 31 |
29 30
|
opeq12d |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑦 ) → 〈 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) , ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) 〉 = 〈 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) , ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) 〉 ) |
| 32 |
19 26 27 28 31
|
cbvmpo |
⊢ ( 𝑢 ∈ 𝑋 , 𝑣 ∈ 𝑌 ↦ 〈 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) , ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) 〉 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) , ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) 〉 ) |
| 33 |
12 32
|
eqtri |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) , ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) 〉 ) |
| 34 |
|
txtopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 35 |
1 2 34
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 36 |
|
toponuni |
⊢ ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) → ( 𝑋 × 𝑌 ) = ∪ ( 𝐽 ×t 𝐾 ) ) |
| 37 |
|
mpteq1 |
⊢ ( ( 𝑋 × 𝑌 ) = ∪ ( 𝐽 ×t 𝐾 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) = ( 𝑧 ∈ ∪ ( 𝐽 ×t 𝐾 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) ) |
| 38 |
35 36 37
|
3syl |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) = ( 𝑧 ∈ ∪ ( 𝐽 ×t 𝐾 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) ) |
| 39 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
| 40 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) |
| 41 |
|
cntop2 |
⊢ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) → 𝐿 ∈ Top ) |
| 42 |
3 41
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 43 |
|
toptopon2 |
⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
| 44 |
42 43
|
sylib |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
| 45 |
|
cnf2 |
⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐿 ) |
| 46 |
35 44 3 45
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐿 ) |
| 47 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) |
| 48 |
47
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ∪ 𝐿 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐿 ) |
| 49 |
46 48
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ∪ 𝐿 ) |
| 50 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ∪ 𝐿 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ ∪ 𝐿 ) ) |
| 51 |
49 50
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ ∪ 𝐿 ) ) |
| 52 |
51
|
3impib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ ∪ 𝐿 ) |
| 53 |
47
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝐴 ∈ ∪ 𝐿 ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = 𝐴 ) |
| 54 |
39 40 52 53
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = 𝐴 ) |
| 55 |
|
cntop2 |
⊢ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) → 𝑀 ∈ Top ) |
| 56 |
4 55
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Top ) |
| 57 |
|
toptopon2 |
⊢ ( 𝑀 ∈ Top ↔ 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ) |
| 58 |
56 57
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ) |
| 59 |
|
cnf2 |
⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑀 ) |
| 60 |
35 58 4 59
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑀 ) |
| 61 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) |
| 62 |
61
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝑀 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑀 ) |
| 63 |
60 62
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝑀 ) |
| 64 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝑀 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ ∪ 𝑀 ) ) |
| 65 |
63 64
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ ∪ 𝑀 ) ) |
| 66 |
65
|
3impib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ ∪ 𝑀 ) |
| 67 |
61
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝐵 ∈ ∪ 𝑀 ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) = 𝐵 ) |
| 68 |
39 40 66 67
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) = 𝐵 ) |
| 69 |
54 68
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 〈 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) , ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) 〉 = 〈 𝐴 , 𝐵 〉 ) |
| 70 |
69
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) , ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) 〉 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 71 |
33 38 70
|
3eqtr3a |
⊢ ( 𝜑 → ( 𝑧 ∈ ∪ ( 𝐽 ×t 𝐾 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 72 |
|
eqid |
⊢ ∪ ( 𝐽 ×t 𝐾 ) = ∪ ( 𝐽 ×t 𝐾 ) |
| 73 |
|
eqid |
⊢ ( 𝑧 ∈ ∪ ( 𝐽 ×t 𝐾 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) = ( 𝑧 ∈ ∪ ( 𝐽 ×t 𝐾 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) |
| 74 |
72 73
|
txcnmpt |
⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) → ( 𝑧 ∈ ∪ ( 𝐽 ×t 𝐾 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn ( 𝐿 ×t 𝑀 ) ) ) |
| 75 |
3 4 74
|
syl2anc |
⊢ ( 𝜑 → ( 𝑧 ∈ ∪ ( 𝐽 ×t 𝐾 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn ( 𝐿 ×t 𝑀 ) ) ) |
| 76 |
71 75
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝐴 , 𝐵 〉 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn ( 𝐿 ×t 𝑀 ) ) ) |