Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnmptid.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
cnmptc.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
cnmptc.p | ⊢ ( 𝜑 → 𝑃 ∈ 𝑌 ) | ||
Assertion | cnmptc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝑃 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptid.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
2 | cnmptc.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
3 | cnmptc.p | ⊢ ( 𝜑 → 𝑃 ∈ 𝑌 ) | |
4 | fconstmpt | ⊢ ( 𝑋 × { 𝑃 } ) = ( 𝑥 ∈ 𝑋 ↦ 𝑃 ) | |
5 | cnconst2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑌 ) → ( 𝑋 × { 𝑃 } ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
6 | 1 2 3 5 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 × { 𝑃 } ) ∈ ( 𝐽 Cn 𝐾 ) ) |
7 | 4 6 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝑃 ) ∈ ( 𝐽 Cn 𝐾 ) ) |