Metamath Proof Explorer


Theorem cnmptc

Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptid.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
cnmptc.k ( 𝜑𝐾 ∈ ( TopOn ‘ 𝑌 ) )
cnmptc.p ( 𝜑𝑃𝑌 )
Assertion cnmptc ( 𝜑 → ( 𝑥𝑋𝑃 ) ∈ ( 𝐽 Cn 𝐾 ) )

Proof

Step Hyp Ref Expression
1 cnmptid.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
2 cnmptc.k ( 𝜑𝐾 ∈ ( TopOn ‘ 𝑌 ) )
3 cnmptc.p ( 𝜑𝑃𝑌 )
4 fconstmpt ( 𝑋 × { 𝑃 } ) = ( 𝑥𝑋𝑃 )
5 cnconst2 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃𝑌 ) → ( 𝑋 × { 𝑃 } ) ∈ ( 𝐽 Cn 𝐾 ) )
6 1 2 3 5 syl3anc ( 𝜑 → ( 𝑋 × { 𝑃 } ) ∈ ( 𝐽 Cn 𝐾 ) )
7 4 6 eqeltrrid ( 𝜑 → ( 𝑥𝑋𝑃 ) ∈ ( 𝐽 Cn 𝐾 ) )