Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptid.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmptc.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmptc.p | ⊢ ( 𝜑 → 𝑃 ∈ 𝑌 ) | ||
| Assertion | cnmptc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝑃 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptid.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmptc.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | cnmptc.p | ⊢ ( 𝜑 → 𝑃 ∈ 𝑌 ) | |
| 4 | fconstmpt | ⊢ ( 𝑋 × { 𝑃 } ) = ( 𝑥 ∈ 𝑋 ↦ 𝑃 ) | |
| 5 | cnconst2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑌 ) → ( 𝑋 × { 𝑃 } ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 6 | 1 2 3 5 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 × { 𝑃 } ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 7 | 4 6 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝑃 ) ∈ ( 𝐽 Cn 𝐾 ) ) |