Metamath Proof Explorer


Theorem cnmptid

Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis cnmptid.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
Assertion cnmptid ( 𝜑 → ( 𝑥𝑋𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) )

Proof

Step Hyp Ref Expression
1 cnmptid.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
2 mptresid ( I ↾ 𝑋 ) = ( 𝑥𝑋𝑥 )
3 idcn ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) )
4 1 3 syl ( 𝜑 → ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) )
5 2 4 eqeltrrid ( 𝜑 → ( 𝑥𝑋𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) )