Step |
Hyp |
Ref |
Expression |
1 |
|
cnmptk1p.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
cnmptk1p.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
3 |
|
cnmptk1p.l |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) |
4 |
|
cnmptk1p.n |
⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally Comp ) |
5 |
|
cnmptk1p.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
6 |
|
cnmptk1p.b |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
7 |
|
cnmptk1p.c |
⊢ ( 𝑦 = 𝐵 → 𝐴 = 𝐶 ) |
8 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) |
9 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑌 ) |
10 |
1 2 6 9
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑌 ) |
11 |
10
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑌 ) |
12 |
7
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∈ 𝑍 ↔ 𝐶 ∈ 𝑍 ) ) |
13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) |
15 |
|
nllytop |
⊢ ( 𝐾 ∈ 𝑛-Locally Comp → 𝐾 ∈ Top ) |
16 |
4 15
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
17 |
|
topontop |
⊢ ( 𝐿 ∈ ( TopOn ‘ 𝑍 ) → 𝐿 ∈ Top ) |
18 |
3 17
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ Top ) |
19 |
|
eqid |
⊢ ( 𝐿 ↑ko 𝐾 ) = ( 𝐿 ↑ko 𝐾 ) |
20 |
19
|
xkotopon |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐿 ∈ Top ) → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
21 |
16 18 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
22 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) |
23 |
1 21 5 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) |
24 |
23
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) |
25 |
|
cnf2 |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) |
26 |
13 14 24 25
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) |
27 |
8
|
fmpt |
⊢ ( ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ↔ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) |
28 |
26 27
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ) |
29 |
12 28 11
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ 𝑍 ) |
30 |
8 7 11 29
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝐵 ) = 𝐶 ) |
31 |
30
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) |
32 |
|
eqid |
⊢ ( 𝐾 Cn 𝐿 ) = ( 𝐾 Cn 𝐿 ) |
33 |
|
toponuni |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) |
34 |
2 33
|
syl |
⊢ ( 𝜑 → 𝑌 = ∪ 𝐾 ) |
35 |
|
mpoeq12 |
⊢ ( ( ( 𝐾 Cn 𝐿 ) = ( 𝐾 Cn 𝐿 ) ∧ 𝑌 = ∪ 𝐾 ) → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑧 ) ) = ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ) |
36 |
32 34 35
|
sylancr |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑧 ) ) = ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ) |
37 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
38 |
|
eqid |
⊢ ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) = ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) |
39 |
37 38
|
xkofvcn |
⊢ ( ( 𝐾 ∈ 𝑛-Locally Comp ∧ 𝐿 ∈ Top ) → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ×t 𝐾 ) Cn 𝐿 ) ) |
40 |
4 18 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ×t 𝐾 ) Cn 𝐿 ) ) |
41 |
36 40
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ×t 𝐾 ) Cn 𝐿 ) ) |
42 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) → ( 𝑓 ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) ) |
43 |
|
fveq2 |
⊢ ( 𝑧 = 𝐵 → ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝐵 ) ) |
44 |
42 43
|
sylan9eq |
⊢ ( ( 𝑓 = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∧ 𝑧 = 𝐵 ) → ( 𝑓 ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝐵 ) ) |
45 |
1 5 6 21 2 41 44
|
cnmpt12 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐿 ) ) |
46 |
31 45
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ∈ ( 𝐽 Cn 𝐿 ) ) |