| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnmptk1p.j | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 2 |  | cnmptk1p.k | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 3 |  | cnmptk1p.l | ⊢ ( 𝜑  →  𝐿  ∈  ( TopOn ‘ 𝑍 ) ) | 
						
							| 4 |  | cnmptk1p.n | ⊢ ( 𝜑  →  𝐾  ∈  𝑛-Locally  Comp ) | 
						
							| 5 |  | cnmptk2.a | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) )  ∈  ( 𝐽  Cn  ( 𝐿  ↑ko  𝐾 ) ) ) | 
						
							| 6 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 ) | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑥 𝑘 | 
						
							| 8 | 6 7 | nffv | ⊢ Ⅎ 𝑥 ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑦 𝑋 | 
						
							| 10 |  | nfmpt1 | ⊢ Ⅎ 𝑦 ( 𝑦  ∈  𝑌  ↦  𝐴 ) | 
						
							| 11 | 9 10 | nfmpt | ⊢ Ⅎ 𝑦 ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑦 𝑤 | 
						
							| 13 | 11 12 | nffv | ⊢ Ⅎ 𝑦 ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 ) | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑦 𝑘 | 
						
							| 15 | 13 14 | nffv | ⊢ Ⅎ 𝑦 ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) | 
						
							| 16 |  | nfcv | ⊢ Ⅎ 𝑤 ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑘 ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 )  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑥 ) ) | 
						
							| 19 | 18 | fveq1d | ⊢ ( 𝑤  =  𝑥  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 )  =  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑥 ) ‘ 𝑘 ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑘  =  𝑦  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑥 ) ‘ 𝑘 )  =  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) ) | 
						
							| 21 | 19 20 | sylan9eq | ⊢ ( ( 𝑤  =  𝑥  ∧  𝑘  =  𝑦 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 )  =  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) ) | 
						
							| 22 | 8 15 16 17 21 | cbvmpo | ⊢ ( 𝑤  ∈  𝑋 ,  𝑘  ∈  𝑌  ↦  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) )  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑌  ↦  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) ) | 
						
							| 23 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  𝑥  ∈  𝑋 ) | 
						
							| 24 |  | nllytop | ⊢ ( 𝐾  ∈  𝑛-Locally  Comp  →  𝐾  ∈  Top ) | 
						
							| 25 | 4 24 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 26 |  | topontop | ⊢ ( 𝐿  ∈  ( TopOn ‘ 𝑍 )  →  𝐿  ∈  Top ) | 
						
							| 27 | 3 26 | syl | ⊢ ( 𝜑  →  𝐿  ∈  Top ) | 
						
							| 28 |  | eqid | ⊢ ( 𝐿  ↑ko  𝐾 )  =  ( 𝐿  ↑ko  𝐾 ) | 
						
							| 29 | 28 | xkotopon | ⊢ ( ( 𝐾  ∈  Top  ∧  𝐿  ∈  Top )  →  ( 𝐿  ↑ko  𝐾 )  ∈  ( TopOn ‘ ( 𝐾  Cn  𝐿 ) ) ) | 
						
							| 30 | 25 27 29 | syl2anc | ⊢ ( 𝜑  →  ( 𝐿  ↑ko  𝐾 )  ∈  ( TopOn ‘ ( 𝐾  Cn  𝐿 ) ) ) | 
						
							| 31 |  | cnf2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( 𝐿  ↑ko  𝐾 )  ∈  ( TopOn ‘ ( 𝐾  Cn  𝐿 ) )  ∧  ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) )  ∈  ( 𝐽  Cn  ( 𝐿  ↑ko  𝐾 ) ) )  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) : 𝑋 ⟶ ( 𝐾  Cn  𝐿 ) ) | 
						
							| 32 | 1 30 5 31 | syl3anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) : 𝑋 ⟶ ( 𝐾  Cn  𝐿 ) ) | 
						
							| 33 | 32 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑦  ∈  𝑌  ↦  𝐴 )  ∈  ( 𝐾  Cn  𝐿 ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  ( 𝑦  ∈  𝑌  ↦  𝐴 )  ∈  ( 𝐾  Cn  𝐿 ) ) | 
						
							| 35 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) | 
						
							| 36 | 35 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝑋  ∧  ( 𝑦  ∈  𝑌  ↦  𝐴 )  ∈  ( 𝐾  Cn  𝐿 ) )  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑥 )  =  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) | 
						
							| 37 | 23 34 36 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑥 )  =  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) | 
						
							| 38 | 37 | fveq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 )  =  ( ( 𝑦  ∈  𝑌  ↦  𝐴 ) ‘ 𝑦 ) ) | 
						
							| 39 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  𝑦  ∈  𝑌 ) | 
						
							| 40 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 41 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐿  ∈  ( TopOn ‘ 𝑍 ) ) | 
						
							| 42 |  | cnf2 | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐿  ∈  ( TopOn ‘ 𝑍 )  ∧  ( 𝑦  ∈  𝑌  ↦  𝐴 )  ∈  ( 𝐾  Cn  𝐿 ) )  →  ( 𝑦  ∈  𝑌  ↦  𝐴 ) : 𝑌 ⟶ 𝑍 ) | 
						
							| 43 | 40 41 33 42 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑦  ∈  𝑌  ↦  𝐴 ) : 𝑌 ⟶ 𝑍 ) | 
						
							| 44 | 43 | fvmptelcdm | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  𝐴  ∈  𝑍 ) | 
						
							| 45 |  | eqid | ⊢ ( 𝑦  ∈  𝑌  ↦  𝐴 )  =  ( 𝑦  ∈  𝑌  ↦  𝐴 ) | 
						
							| 46 | 45 | fvmpt2 | ⊢ ( ( 𝑦  ∈  𝑌  ∧  𝐴  ∈  𝑍 )  →  ( ( 𝑦  ∈  𝑌  ↦  𝐴 ) ‘ 𝑦 )  =  𝐴 ) | 
						
							| 47 | 39 44 46 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝑦  ∈  𝑌  ↦  𝐴 ) ‘ 𝑦 )  =  𝐴 ) | 
						
							| 48 | 38 47 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 )  =  𝐴 ) | 
						
							| 49 | 48 | 3impa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑌 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 )  =  𝐴 ) | 
						
							| 50 | 49 | mpoeq3dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑌  ↦  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) )  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑌  ↦  𝐴 ) ) | 
						
							| 51 | 22 50 | eqtrid | ⊢ ( 𝜑  →  ( 𝑤  ∈  𝑋 ,  𝑘  ∈  𝑌  ↦  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) )  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑌  ↦  𝐴 ) ) | 
						
							| 52 | 1 2 | cnmpt1st | ⊢ ( 𝜑  →  ( 𝑤  ∈  𝑋 ,  𝑘  ∈  𝑌  ↦  𝑤 )  ∈  ( ( 𝐽  ×t  𝐾 )  Cn  𝐽 ) ) | 
						
							| 53 | 1 2 52 5 | cnmpt21f | ⊢ ( 𝜑  →  ( 𝑤  ∈  𝑋 ,  𝑘  ∈  𝑌  ↦  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 ) )  ∈  ( ( 𝐽  ×t  𝐾 )  Cn  ( 𝐿  ↑ko  𝐾 ) ) ) | 
						
							| 54 | 1 2 | cnmpt2nd | ⊢ ( 𝜑  →  ( 𝑤  ∈  𝑋 ,  𝑘  ∈  𝑌  ↦  𝑘 )  ∈  ( ( 𝐽  ×t  𝐾 )  Cn  𝐾 ) ) | 
						
							| 55 |  | eqid | ⊢ ( 𝐾  Cn  𝐿 )  =  ( 𝐾  Cn  𝐿 ) | 
						
							| 56 |  | toponuni | ⊢ ( 𝐾  ∈  ( TopOn ‘ 𝑌 )  →  𝑌  =  ∪  𝐾 ) | 
						
							| 57 | 2 56 | syl | ⊢ ( 𝜑  →  𝑌  =  ∪  𝐾 ) | 
						
							| 58 |  | mpoeq12 | ⊢ ( ( ( 𝐾  Cn  𝐿 )  =  ( 𝐾  Cn  𝐿 )  ∧  𝑌  =  ∪  𝐾 )  →  ( 𝑓  ∈  ( 𝐾  Cn  𝐿 ) ,  𝑧  ∈  𝑌  ↦  ( 𝑓 ‘ 𝑧 ) )  =  ( 𝑓  ∈  ( 𝐾  Cn  𝐿 ) ,  𝑧  ∈  ∪  𝐾  ↦  ( 𝑓 ‘ 𝑧 ) ) ) | 
						
							| 59 | 55 57 58 | sylancr | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝐾  Cn  𝐿 ) ,  𝑧  ∈  𝑌  ↦  ( 𝑓 ‘ 𝑧 ) )  =  ( 𝑓  ∈  ( 𝐾  Cn  𝐿 ) ,  𝑧  ∈  ∪  𝐾  ↦  ( 𝑓 ‘ 𝑧 ) ) ) | 
						
							| 60 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 61 |  | eqid | ⊢ ( 𝑓  ∈  ( 𝐾  Cn  𝐿 ) ,  𝑧  ∈  ∪  𝐾  ↦  ( 𝑓 ‘ 𝑧 ) )  =  ( 𝑓  ∈  ( 𝐾  Cn  𝐿 ) ,  𝑧  ∈  ∪  𝐾  ↦  ( 𝑓 ‘ 𝑧 ) ) | 
						
							| 62 | 60 61 | xkofvcn | ⊢ ( ( 𝐾  ∈  𝑛-Locally  Comp  ∧  𝐿  ∈  Top )  →  ( 𝑓  ∈  ( 𝐾  Cn  𝐿 ) ,  𝑧  ∈  ∪  𝐾  ↦  ( 𝑓 ‘ 𝑧 ) )  ∈  ( ( ( 𝐿  ↑ko  𝐾 )  ×t  𝐾 )  Cn  𝐿 ) ) | 
						
							| 63 | 4 27 62 | syl2anc | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝐾  Cn  𝐿 ) ,  𝑧  ∈  ∪  𝐾  ↦  ( 𝑓 ‘ 𝑧 ) )  ∈  ( ( ( 𝐿  ↑ko  𝐾 )  ×t  𝐾 )  Cn  𝐿 ) ) | 
						
							| 64 | 59 63 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝐾  Cn  𝐿 ) ,  𝑧  ∈  𝑌  ↦  ( 𝑓 ‘ 𝑧 ) )  ∈  ( ( ( 𝐿  ↑ko  𝐾 )  ×t  𝐾 )  Cn  𝐿 ) ) | 
						
							| 65 |  | fveq1 | ⊢ ( 𝑓  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 )  →  ( 𝑓 ‘ 𝑧 )  =  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 ) ‘ 𝑧 ) ) | 
						
							| 66 |  | fveq2 | ⊢ ( 𝑧  =  𝑘  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 ) ‘ 𝑧 )  =  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) ) | 
						
							| 67 | 65 66 | sylan9eq | ⊢ ( ( 𝑓  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 )  ∧  𝑧  =  𝑘 )  →  ( 𝑓 ‘ 𝑧 )  =  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) ) | 
						
							| 68 | 1 2 53 54 30 2 64 67 | cnmpt22 | ⊢ ( 𝜑  →  ( 𝑤  ∈  𝑋 ,  𝑘  ∈  𝑌  ↦  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) )  ∈  ( ( 𝐽  ×t  𝐾 )  Cn  𝐿 ) ) | 
						
							| 69 | 51 68 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑌  ↦  𝐴 )  ∈  ( ( 𝐽  ×t  𝐾 )  Cn  𝐿 ) ) |