Metamath Proof Explorer


Theorem cnmptkc

Description: The curried first projection function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptk1.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
cnmptk1.k ( 𝜑𝐾 ∈ ( TopOn ‘ 𝑌 ) )
Assertion cnmptkc ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝑦𝑌𝑥 ) ) ∈ ( 𝐽 Cn ( 𝐽ko 𝐾 ) ) )

Proof

Step Hyp Ref Expression
1 cnmptk1.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
2 cnmptk1.k ( 𝜑𝐾 ∈ ( TopOn ‘ 𝑌 ) )
3 fconstmpt ( 𝑌 × { 𝑥 } ) = ( 𝑦𝑌𝑥 )
4 3 mpteq2i ( 𝑥𝑋 ↦ ( 𝑌 × { 𝑥 } ) ) = ( 𝑥𝑋 ↦ ( 𝑦𝑌𝑥 ) )
5 xkoccn ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑥𝑋 ↦ ( 𝑌 × { 𝑥 } ) ) ∈ ( 𝐽 Cn ( 𝐽ko 𝐾 ) ) )
6 2 1 5 syl2anc ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝑌 × { 𝑥 } ) ) ∈ ( 𝐽 Cn ( 𝐽ko 𝐾 ) ) )
7 4 6 eqeltrrid ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝑦𝑌𝑥 ) ) ∈ ( 𝐽 Cn ( 𝐽ko 𝐾 ) ) )