Metamath Proof Explorer


Theorem cnmptlimc

Description: If F is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses cnmptlimc.f ( 𝜑 → ( 𝑥𝐴𝑋 ) ∈ ( 𝐴cn𝐷 ) )
cnmptlimc.b ( 𝜑𝐵𝐴 )
cnmptlimc.1 ( 𝑥 = 𝐵𝑋 = 𝑌 )
Assertion cnmptlimc ( 𝜑𝑌 ∈ ( ( 𝑥𝐴𝑋 ) lim 𝐵 ) )

Proof

Step Hyp Ref Expression
1 cnmptlimc.f ( 𝜑 → ( 𝑥𝐴𝑋 ) ∈ ( 𝐴cn𝐷 ) )
2 cnmptlimc.b ( 𝜑𝐵𝐴 )
3 cnmptlimc.1 ( 𝑥 = 𝐵𝑋 = 𝑌 )
4 eqid ( 𝑥𝐴𝑋 ) = ( 𝑥𝐴𝑋 )
5 3 eleq1d ( 𝑥 = 𝐵 → ( 𝑋𝐷𝑌𝐷 ) )
6 cncff ( ( 𝑥𝐴𝑋 ) ∈ ( 𝐴cn𝐷 ) → ( 𝑥𝐴𝑋 ) : 𝐴𝐷 )
7 1 6 syl ( 𝜑 → ( 𝑥𝐴𝑋 ) : 𝐴𝐷 )
8 4 fmpt ( ∀ 𝑥𝐴 𝑋𝐷 ↔ ( 𝑥𝐴𝑋 ) : 𝐴𝐷 )
9 7 8 sylibr ( 𝜑 → ∀ 𝑥𝐴 𝑋𝐷 )
10 5 9 2 rspcdva ( 𝜑𝑌𝐷 )
11 4 3 2 10 fvmptd3 ( 𝜑 → ( ( 𝑥𝐴𝑋 ) ‘ 𝐵 ) = 𝑌 )
12 1 2 cnlimci ( 𝜑 → ( ( 𝑥𝐴𝑋 ) ‘ 𝐵 ) ∈ ( ( 𝑥𝐴𝑋 ) lim 𝐵 ) )
13 11 12 eqeltrrd ( 𝜑𝑌 ∈ ( ( 𝑥𝐴𝑋 ) lim 𝐵 ) )