| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmptlimc.f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) ∈ ( 𝐴 –cn→ 𝐷 ) ) |
| 2 |
|
cnmptlimc.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
| 3 |
|
cnmptlimc.1 |
⊢ ( 𝑥 = 𝐵 → 𝑋 = 𝑌 ) |
| 4 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) |
| 5 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( 𝑋 ∈ 𝐷 ↔ 𝑌 ∈ 𝐷 ) ) |
| 6 |
|
cncff |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) ∈ ( 𝐴 –cn→ 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 ⟶ 𝐷 ) |
| 7 |
1 6
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 ⟶ 𝐷 ) |
| 8 |
4
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑋 ∈ 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 ⟶ 𝐷 ) |
| 9 |
7 8
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑋 ∈ 𝐷 ) |
| 10 |
5 9 2
|
rspcdva |
⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) |
| 11 |
4 3 2 10
|
fvmptd3 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) ‘ 𝐵 ) = 𝑌 ) |
| 12 |
1 2
|
cnlimci |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) ‘ 𝐵 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) limℂ 𝐵 ) ) |
| 13 |
11 12
|
eqeltrrd |
⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) limℂ 𝐵 ) ) |